Presentation of Short Term Scientific Missions Ancona (IT) – Nottingham (UK) in 2017

Visitor: Luca Bastianelli¹ Franco Moglie¹ Host: Gabriele Gradoni^{2,3}, David Thomas³

¹Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy.
 ²School of Mathematical Sciences, University of Nottingham, UK.
 ³The George Green Institute of Electromagnetics Research, University of Nottingham, UK.

ACCREDIT - IC1407

LB & FM (DII - UNIVPM)

STSM Ancona

2018/02/07 1 / 32

STSM from Ancona to Nottingham in 2017

List

- (Mar 13–31): Luca Bastianelli, "Analysis of chaotic electromagnetic environments" Reference Number: COST-STSM-IC1407-36889
- (Jul 7–15): Franco Moglie, "Reverberation chamber simulation on high performance computers" Reference Number: COST-STSM-IC1407-38300
- (Oct 9–21): Luca Bastianelli, "Analysis of chaotic electromagnetic environments" Reference Number: COST-STSM-IC1407-38975

Numerical Approach – FDTD Simulation

Unfavorable

- ⋆ High Q-factor implies very long time for simulations
- * Stirrer effects must be observed over a large number of positions
- High powerful computers are required

Favorable

- * "Embarrassing parallel" structure
 - time domain (FDTD and FFT): each stirrer position can run on a different MPI process
 - frequency domain (statistic analysis): each frequency can run on a different MPI process
- * FDTD code is easily parallelizable with OpenMP or MPI

FDTD Simulation

Parameters

- * Investigated band: 0.2–2.0 GHz
- \star Time step: 50 ps and cell size: 15 mm (λ /10 at 2.0 GHz)
- \star FDTD grid: 401 \times 268 \times 168
- * Wall losses replaced by equivalent volumetric losses
- * We analyzed 256 stirrer positions

FDTD Simulation

Computing resource: CINECA Lenovo Adam Pass (MARCONI)

- * Architecture: Intel OmniPath Cluster
- ⋆ Processor Type: Intel Xeon Phi 7250 Knights Landing at 1.40 GHz
- * Racks: 50
- * Computing Nodes: 3600
- * Cores/Node: 68
- Computing Cores: 244 800
- ⋆ RAM: 16 GB/node of MCDRAM and 96 GB/node of DDR4
- * Internal Network: Intel OmniPath Architecture 2 : 1
- * Disk Space: 17 PB (raw) of local storage
- * Peak Performance: 11 PFlop/s
- * Ranked at position 14 in the Top 500 list of November 2017

A (10) A (10) A (10)

PRACE Project

Computing resources granted under a PRACE project

- * 15th Call for PRACE Project Access
- * Proposal ID: 2016143324
- Project name: SREDIT Simulations of Radiated Emissions in Densely Integrated Technologies
- * Participants: Ancona, Granada, Nottingham, York
- * Awarded resources: 12 353 536 core-hours
- System: Marconi KNL (CINECA, Italy)
- ★ We plan to apply the Call 17 that should open the 7 March 2018

Structure of the results

IEC 61000-4-21 Standard method

2018/02/07 7 / 32

Evaluation of Uncorrelated frequencies

At each frequency step, the electric field values are computed in each point of a volumetric spatial grid

Multivariate approach

Matrix of the fields:

$${oldsymbol{e}} = \left[egin{array}{cccc} {oldsymbol{e}}_1^{(1)} & \ldots & {oldsymbol{e}}_1^{(N_f)} \\ {oldsymbol{e}}_2^{(1)} & \ldots & {oldsymbol{e}}_2^{(N_f)} \\ dots & \ddots & dots \\ {oldsymbol{e}}_{N_\rho}^{(1)} & \ldots & {oldsymbol{e}}_{N_\rho}^{(N_f)} \end{array}
ight]$$

 $\star\,$ The columns are the field values at each frequency step

 \star The rows are the field values in each spatial point

Multivariate Approach

Correlation matrix build up

 ρ_{jk} is the Pearson correlation coefficient between the frequency points field arrays *j* and *k* for all the probed points

$$\underline{\underline{R}} = \begin{bmatrix} \rho_{11} & \rho_{12} & \dots & \rho_{1N_f} \\ \rho_{21} & \rho_{22} & \dots & \rho_{2N_f} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{N_f1} & \rho_{N_f2} & \dots & \rho_{N_fN_f} \end{bmatrix} \qquad \rho_{jk} = \frac{\operatorname{Cov}\left(\underline{e}^{(j)}, \underline{e}^{(k)}\right)}{\sqrt{\operatorname{Var}\left(\underline{e}^{(j)}\right)\operatorname{Var}\left(\underline{e}^{(k)}\right)}}$$

 Counting of uncorrelated frequency points using a threshold [*IEC* 61000 4 - 21]

$$N_{u} = \frac{N_{f}^{2}}{\# \left[\underline{\underline{R}} > r\right]}, \ r = \frac{1}{e} \left[1 - \frac{7.22}{\left(N_{f}^{2}\right)^{0.64}}\right]$$

* where r is the threshold value

イロト イポト イヨト イヨト

Simulated reverberation chamber

- Dimensions:
 - $6 \times 4 \times 2.5 \text{ m}^3$
- $f_0 \simeq 45 \text{ MHz}$
- Discone antennas
- Curved diffractors
- Vertical stirrer
- Working volume

Kind of diffractors

Each configuration has a proper volume and surface correction

A (1) > A (2) > A

Kind of diffractors

Each configuration has a proper volume and surface correction

< (□) < 三 > (□)

Kind of diffractors

Each configuration has a proper volume and surface correction

< 6 b

Results

LB & FM (DII - UNIVPM)

STSM Ancona

2018/02/07 12/32

Quality factor

Q-factor of the cavity:

$$Q = \frac{16\pi^2 V \langle |S_{21}|^2 \rangle}{\eta_{TX} \eta_{RX} (1 - |S_{11}|^2) (1 - |S_{22}|^2)} \left(\frac{f}{c}\right)^3$$

For analytical analysis when wall losses are dominant, the Q-factor can be evaluated by:

$$\mathcal{Q}_{ws}=rac{3\,V^{ws}}{2\mu_r\delta\,S^{ws}}\;,\;\;\mathcal{Q}_s=rac{3\,V^s}{2\mu_r\delta\,S^s}\;,$$

where $\delta = \frac{3}{\sqrt{\omega\mu\sigma}}$ is the skin depth [m]

The total volume and surface including diffractors are:

$$V^{s} = V^{ws} - \alpha \frac{4}{3}\pi r^{3} \text{ [m^3]}$$
$$S^{s} = S^{ws} + \beta \pi r^{2} \text{ [m^2]}$$

 α and β depend on the number and position of diffractors

Losses

Losses mechanism of antennas is given by:

$$\Omega_a = rac{16\pi^2 V}{\lambda^3}$$
 (dominant at low frequency)

then

$$Q_{tot}^{-1} = Q^{-1} + Q_a^{-1}$$

- Losses adopted within the theoretical model is $\sigma = 5000 \text{ S/m}$
- Volumetric losses adopted in the FDTD is:
 - $\sigma_v = 1 \cdot 10^{-5}$ S/m for the empty chamber
 - scaled σ_v for a chamber loaded by spheres

Modal overlap

• The average modal overlap is defined by:

$$M(f) = m(f) \frac{f}{Q(f)}$$

m(f) is the average modal density predicted by the Weyl's law

- The internal power transmission is evaluated by: $P(f) = \frac{\langle |S_{21}|^2 \rangle}{\eta_{T_X} \eta_{R_X} (1 - |S_{11}|^2) (1 - |S_{22}|^2)}$
- The modal overlap can be re-write as:

$$M(f) = rac{8\pi V}{Q(f)} rac{f^3}{c^3}$$

by using the P(f) is it possible to define an estimator:

$$\bar{M} = \frac{1}{2\pi P(f)}$$

The \bar{M} estimator does not require a-priori information about the cavity

LB & FM (DII - UNIVPM)

Label ID	#Spheres	<i>r</i> (m)	#1/8	#1/4	#1/2	V ^s (m ³)	S ^s (m²)
Empty RC	0	//	/	/	//	60.0	98.00
A)	4	0.50	0	0	4	58.95	101.14
<i>B</i>)	10	0.50	2	4	4	58.29	102.31
<i>C</i>)	20	0.50	1	17	2	56.65	107.80
D)	30	0.50	4	18	8	55.45	110.50
E)	10	0.75	2	4	4	54.25	107.71

イロト イヨト イヨト イヨト

LB & FM (DII - UNIVPM)

STSM Ancona

2018/02/07 17/32

A (10) A (10)

Uncorrelated stirrer positions

LB & FM (DII - UNIVPM)

STSM Ancona

2018/02/07 20 / 32

-

A (10) A (10)

< 6 b

LB & FM (DII - UNIVPM)

2018/02/07 22/32

A b

Experimental setup

Nottingham's RC

LB & FM (DII - UNIVPM)

STSM Ancona

RC for emulation of real-life wireless environments

$$\begin{aligned} PDP(t) &= \left\langle |h(t)|^2 \right\rangle_N, h(t) = \text{IFT}\left[S_{21}\right] \\ \tau_{\text{RMS}} &= \frac{\sqrt{\int_0^\infty (t - \tau_{\text{ave}})^2 PDP(t) dt}}{\int_0^\infty PDP(t) dt} \\ \tau_{\text{ave}} &= \frac{\int_0^\infty tPDP(t) dt}{\int_0^\infty PDP(t) dt} \end{aligned}$$

In order to match the required time delay spread:

- * Tuning the PDP by adding absorbing material
- * Optimization of absorbing positioning

Typical Environments

Delay spread	NLOS	LOS	NLOS	LOS
(ns)	Lab	Lab	Room	Room
Average	93.35	42.09	66.05	38.26
RMS	766.07	395.66	674.46	274.52
Average				
threshold -30 dB [1]	72.68	36.16	50.75	30.83
RMS				
threshold -30 dB [1]	34.25	22.54	30.46	20.64

 Genender, E.; Holloway C.L.; Remley K.A.;
Ladbury J.; Koepke G.; Garbe H., Use of
reverberation chamber to simulate the power delay
profile of a wireless environment, Int. Symp.
Electromagn. Compat EMC Europe, Hamburg,
Sep. 2008, pp. 1-6.

Scenario	Delay spread (ns)		
Indoor Hotepot	LOS	20	
	NLOS	39	
	LOS	65	
Urban Micro	NLOS	129	
	O-to-I	49	
Suburban Macro	LOS	59	
	NLOS	75	
Urban Macro	LOS	93	
	NLOS	365	
Rural Macro	LOS	32	
	NLOS	37	

ITU Report M.2135-1, Dec. 2009

イロト イヨト イヨト イヨト

Results

Absorbers

Measurements and simulations for a single absorber

Layer number	1	2	3	
€r				
(VHP-8)	1.2	1.5	1.7	
σ (S/m)				
(VHP-8)	0.01	0.05	0.08	

LB & FM (DII - UNIVPM)

STSM Ancona

Results

Q-factor

LB & FM (DII - UNIVPM)

2018/02/07 28 / 32

< 17 ▶

Results

 ▶ < ≣ </th>
 > < </th>
 >
 >
 >

 >

< 17 ▶

Publications

Conference Papers

- L. Bastianelli, F. Moglie, V. Mariani Primiani, "Evaluation of Stirrer Efficiency Varying the Volume of the Reverberation Chamber" – EMCS 2016 Ottawa
- L. Bastianelli, V. Mariani Primiani, F. Moglie, "Effect of Loss Distribution on Uncorrelated Spatial Points and Frequency Steps in Reverberation Chambers" – 2016 EMC EUROPE Wroclaw
- L. Bastianelli, G. Gradoni, F. Moglie, V. Mariani Primiani, "Full Wave Analysis of Chaotic Reverberation Chambers" – URSI GASS 2017 – URSI Young Scientist Award Commission E
- G. Gradoni, L. Bastianelli, V. Mariani Primiani, F. Moglie, "Chaos Enhancement in Reverberation Chambers" – European Microwave Week 2017
- L. Bastianelli, G. Gradoni, F. Moglie, V. Mariani Primiani,
 "Reverberation Chambers Deformed by Spherical Diffractors" EMC EUROPE 2017

LB & FM (DII - UNIVPM)

Publications

Ph.D. Thesis

 Luca Bastianelli "Analysis of Complex and Chaotic Electromagnetic Structures: the Reverberation Chamber and its Applications" – To be defended in March 2018

Journal Paper approaching to submission:

- Chaotic Reverberation Chamber: Improving its Performance by Appropriate Boundary Deformations
- $\star\,$ Evaluation of the Reverberation Chamber Time Constant From Power Delay Profile and $\sigma\,$

A (10) A (10)

Conclusions

Measurements and Simulations of Nottingham Facilities

- * Comparison between FDTD simulation and experimental results
- ⋆ Loss effects
- Best load configuration for wireless tests Power delay profile and time delay spread

Diffusors improve the chamber's performance

- Increase the radius
- Increase the number of diffractors
- * Placement of diffractors is relevant
- Choose the optimal diffractor
- Trade off: performance/usable volume

A (1) > A (2) > A

Conclusions

Measurements and Simulations of Nottingham Facilities

- * Comparison between FDTD simulation and experimental results
- ⋆ Loss effects
- Best load configuration for wireless tests Power delay profile and time delay spread

Diffusors improve the chamber's performance

- * Increase the radius
- ⋆ Increase the number of diffractors
- * Placement of diffractors is relevant
- * Choose the optimal diffractor
- * Trade off: performance/usable volume