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Motivation of statistical SP
 Electromagnetic field (EMF) emitted by the printed circuit board (PCB) 

contains a stochastic component sensing by the near-field scanning 
probe and registering by the real-time digital oscilloscope

 Statistical signal processing can be used for the characterization of the 
received stochastic EMF and for the localization and identification of the 
radiating sources

 The measured stochastic signals contain the superposition of different 
radiating sources located in the environment of the DUT:
 emissions from transmission lines transferring the data sequences 

between distinct blocks of the DUT;
 thermal noise and interference from surrounding radiations
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Classification of random processes
Random process

Time sequence of random 
variables

The set of random signals

𝒮𝒮 𝑡𝑡 = 𝑆𝑆𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1,𝑛𝑛

𝑆𝑆𝑡𝑡𝑖𝑖 is a random variable at 𝑡𝑡 = 𝑡𝑡𝑖𝑖

𝒮𝒮 𝑡𝑡 = 𝑆𝑆 𝑡𝑡,𝜔𝜔 :𝜔𝜔 ∈ Ω , 𝑡𝑡 ∈ ℝ
𝜔𝜔 is an elementary event
Ω is a sample space
ℝ is a set of real numbers

 The stochastic phenomena can be mathematically characterized by the model of random 
process constructed from the measured random signals

 The random variable is fully described by the probability density function for each time t = ti

 Random signal is a time domain realization of the stochastic phenomena for each event 𝜔𝜔 ∈ Ω
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Cumulative Distribution Function
 The cumulative distribution function of the stochastic process is:

𝐹𝐹𝒮𝒮 𝑠𝑠, 𝑡𝑡 = 𝑃𝑃 𝑆𝑆 𝑡𝑡,𝜔𝜔 ≤ 𝑠𝑠 = �
Ω
𝐈𝐈 𝜔𝜔:𝑆𝑆 𝑡𝑡,𝜔𝜔 ≤𝑠𝑠 d𝑃𝑃 𝜔𝜔 = 𝐸𝐸 𝐈𝐈 𝜔𝜔:𝑆𝑆 𝑡𝑡,𝜔𝜔 ≤𝑠𝑠

 indicator function 𝐈𝐈 𝜔𝜔:𝑆𝑆 𝑡𝑡,𝜔𝜔 ≤𝑠𝑠 = �1,𝜔𝜔: 𝑆𝑆 𝑡𝑡,𝜔𝜔 ≤ 𝑠𝑠
0,𝜔𝜔: 𝑆𝑆 𝑡𝑡,𝜔𝜔 > 𝑠𝑠

 𝐸𝐸 � is the operator of statistical expectation or ensemble averaging1 using Lebesgue integral

1 A. Napolitano, Generalizations of Cyclostationary Signal Processing: Spectral Analysis and 
Applications. John Wiley & Sons Ltd - IEEE Press, 2012.

 The expected value of the stochastic process is the statistical mean

𝑚𝑚𝒮𝒮 𝑡𝑡 = 𝐸𝐸 𝑆𝑆 𝑡𝑡,𝜔𝜔 = �
Ω
𝑆𝑆 𝑡𝑡,𝜔𝜔 d𝑃𝑃 𝜔𝜔 = �

ℝ
𝑠𝑠 d𝐹𝐹𝒮𝒮 𝑠𝑠, 𝑡𝑡
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Second-Order Characterization

 The second-order joint cumulative distribution function of the stochastic process is:

𝐹𝐹𝒮𝒮 𝑠𝑠1, 𝑠𝑠2; 𝑡𝑡1, 𝑡𝑡2 = 𝑃𝑃 𝑆𝑆 𝑡𝑡1,𝜔𝜔 ≤ 𝑠𝑠1, 𝑆𝑆 𝑡𝑡2,𝜔𝜔 ≤ 𝑠𝑠2 = 𝐸𝐸 𝐈𝐈 𝜔𝜔:𝑆𝑆 𝑡𝑡1,𝜔𝜔 ≤𝑠𝑠1 𝐈𝐈 𝜔𝜔:𝑆𝑆 𝑡𝑡2,𝜔𝜔 ≤𝑠𝑠2

 The autocorrelation function of the stochastic process is:

ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏 = 𝐸𝐸 𝑆𝑆 𝑡𝑡,𝜔𝜔 𝑆𝑆 𝑡𝑡 + 𝜏𝜏,𝜔𝜔 = �
ℝ2
𝑠𝑠1𝑠𝑠2 d𝐹𝐹𝒮𝒮 𝑠𝑠1, 𝑠𝑠2; 𝑡𝑡, 𝑡𝑡 + 𝜏𝜏

 The autocovariance of the stochastic process is its autocorrelation function of the zero-mean process:

𝒞𝒞𝒮𝒮 𝑡𝑡, 𝜏𝜏 = 𝐸𝐸 𝑆𝑆 𝑡𝑡,𝜔𝜔 −𝑚𝑚𝒮𝒮 𝑡𝑡 𝑆𝑆 𝑡𝑡 + 𝜏𝜏,𝜔𝜔 −𝑚𝑚𝒮𝒮 𝑡𝑡 + 𝜏𝜏
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Spectral Characterization
 The second order stochastic process is harmonizable and can be characterized in the frequency 

domain if its autocorrelation function can be expressed by the Fourier-Stieltjes integral:

𝐸𝐸 𝑆𝑆 𝑡𝑡1,𝜔𝜔 𝑆𝑆 𝑡𝑡2,𝜔𝜔 = �
ℝ2
𝑒𝑒𝑗𝑗2𝜋𝜋 𝑓𝑓1𝑡𝑡1+𝑓𝑓2𝑡𝑡2 d𝒢𝒢𝒮𝒮 𝑓𝑓1,𝑓𝑓2

 where 𝒢𝒢𝒮𝒮 𝑓𝑓1,𝑓𝑓2 is a spectral correlation function with bounded variation. It is also known that a 
stochastic process is harmonizable if and only if its covariance function is harmonizable

 The Fourier transform of the realization 𝑆𝑆 𝑡𝑡,𝜔𝜔 of the harmonizable stochastic process can be 
expressed as:

�̂�𝑆 𝑓𝑓,𝜔𝜔 = �
ℝ
𝑆𝑆 𝑡𝑡,𝜔𝜔 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝑡𝑡 d𝑡𝑡

 where �̂�𝑆 𝑓𝑓,𝜔𝜔 can contain Dirac delta functions
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Time-Frequency Relation

 The spectral correlation function (Loève bifrequency spectrum) of the harmonizable stochastic 
process is defined as:

𝒢𝒢𝒮𝒮 𝑓𝑓1,𝑓𝑓2 = 𝐸𝐸 �̂�𝑆 𝑓𝑓1,𝜔𝜔 �̂�𝑆 𝑓𝑓2,𝜔𝜔

 The relation between the autocorrelation function and the spectral correlation function is defined 
by two-dimensional Fourier transform:

𝐸𝐸 𝑆𝑆 𝑡𝑡1 𝑆𝑆 𝑡𝑡2 = �
ℝ2
𝒢𝒢𝒮𝒮 𝑓𝑓1,𝑓𝑓2 𝑒𝑒𝑗𝑗2𝜋𝜋 𝑓𝑓1𝑡𝑡1+𝑓𝑓2𝑡𝑡2 d𝑓𝑓1d𝑓𝑓2

𝒢𝒢𝒮𝒮 𝑓𝑓1, 𝑓𝑓2 = �
ℝ2
𝐸𝐸 𝑆𝑆 𝑡𝑡1 𝑆𝑆 𝑡𝑡2 𝑒𝑒−𝑗𝑗2𝜋𝜋 𝑓𝑓1𝑡𝑡1+𝑓𝑓2𝑡𝑡2 d𝑡𝑡1d𝑡𝑡2
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Time-Variant Spectrum

 The time-variant spectrum of the stochastic process is the Fourier transform of the 
autocorrelation function with respect to the lag parameter 𝜏𝜏 = 𝑡𝑡2 − 𝑡𝑡1:

𝒱𝒱𝒮𝒮 𝑡𝑡, 𝑓𝑓 = �
ℝ
ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋 d𝜏𝜏

 By introducing the variables 𝑡𝑡1 = 𝑡𝑡 + 𝜏𝜏/2 and 𝑡𝑡2 = 𝑡𝑡 − 𝜏𝜏/2 it can be obtained a time-
frequency representation in terms of Wigner-Ville spectrum for stochastic processes:

𝒲𝒲𝒮𝒮 𝑡𝑡, 𝑓𝑓 = �
ℝ
𝐸𝐸 𝑆𝑆 𝑡𝑡 + 𝜏𝜏/2 𝑆𝑆 𝑡𝑡 − 𝜏𝜏/2 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋 d𝜏𝜏 = �

ℝ
𝐸𝐸 �̂�𝑆 𝑓𝑓 + 𝜈𝜈/2 �̂�𝑆 𝑓𝑓 − 𝜈𝜈/2 𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡 d𝜈𝜈
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Characteristics of RP

 Distribution of the probability over RVs of the random process

 Ensemble averaging of the random process by using expectation 
operator

 Statistical mean and 2D-autocorrelation function in time domain

 Spectral correlation function in bi-frequency domain

 Time-variant and Wigner-Ville spectra in time-frequency domain

 Probabilistic approach is more theoretical then practical
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Stationary process

 Second-order wide-sense stationary process (WSS) can be characterized by an 
autocorrelation function (ACF) and a power spectral density linked by the Wiener-Khinchin 
relation

ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏 = 𝑅𝑅𝒮𝒮 𝜏𝜏 = �
ℝ
𝑉𝑉𝒮𝒮 𝑓𝑓 𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋 d𝑓𝑓

𝒱𝒱𝒮𝒮 𝑡𝑡, 𝑓𝑓 = 𝑉𝑉𝒮𝒮 𝑓𝑓 = �
ℝ
𝑅𝑅𝒮𝒮 𝜏𝜏 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋 d𝜏𝜏

 Due to the dependency of the ACF for the WSS process only from 𝜏𝜏 = 𝑡𝑡2 − 𝑡𝑡1, the spectral 
correlation function 𝒢𝒢𝒮𝒮 𝑓𝑓1,𝑓𝑓2 can be non-zero only for 𝑓𝑓1 = −𝑓𝑓2

𝐸𝐸 𝑆𝑆 𝑡𝑡1 𝑆𝑆 𝑡𝑡1 − 𝜏𝜏 = �
ℝ2
𝒢𝒢𝒮𝒮 𝑓𝑓1,𝑓𝑓2 𝑒𝑒𝑗𝑗2𝜋𝜋 𝑓𝑓1𝑡𝑡1+𝑓𝑓2 𝑡𝑡1−𝜋𝜋 d𝑓𝑓1d𝑓𝑓2 = �

ℝ2
𝒢𝒢𝒮𝒮 𝑓𝑓1,−𝑓𝑓1 𝑒𝑒𝑗𝑗2𝜋𝜋𝑓𝑓1𝜋𝜋 d𝑓𝑓1d𝑓𝑓2
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Stationary process

𝑡𝑡

𝜏𝜏

𝑅𝑅𝒮𝒮 𝜏𝜏

𝑆𝑆 𝑡𝑡

𝑓𝑓

𝑉𝑉𝒮𝒮 𝑓𝑓

1/𝛼𝛼−1/𝛼𝛼

𝛼𝛼
2𝜋𝜋−

𝛼𝛼
2𝜋𝜋

0

0

0

 Random process realization

 Power spectral density

 Autocorrelation function
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Discrete-time random process
 Discrete time process can be analyzed as the sampled continuous time realizations of the stochastic 

processes:

𝒮𝒮 𝑛𝑛 = 𝒮𝒮 𝑡𝑡 = 𝑛𝑛∆ = �
𝑘𝑘=−∞

∞

𝑆𝑆𝑘𝑘𝛿𝛿 𝑛𝑛 − 𝑘𝑘

 where ∆ is a sample interval. The Discrete Time Fourier Transform (DTFT) of the realization 𝑆𝑆 𝑛𝑛 of 
the harmonizable discrete stochastic process can be expressed as:

�̂�𝑆 𝜑𝜑 = �
𝑛𝑛=−∞

∞

𝑆𝑆𝑛𝑛𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑛𝑛

 where 𝜑𝜑 = 𝑓𝑓∆ is a normalizes frequency. The inverse DTFT gives the initial realization of the 
discretized stochastic process:

𝑆𝑆 𝑛𝑛 = �
−1/2

1/2
�̂�𝑆 𝜑𝜑 𝑒𝑒𝑗𝑗2𝜋𝜋𝜋𝜋𝑛𝑛
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Discrete-time stationary process

𝑛𝑛

𝑚𝑚

𝑅𝑅𝒮𝒮[𝑚𝑚]

𝒮𝒮 𝑛𝑛

𝜑𝜑

𝑉𝑉𝒮𝒮 𝑓𝑓

1−1 0

0 1 2−1−2

 Discrete time process

 Periodical power spectral density

 Discrete autocorrelation function
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Characteristics of Discrete random process
 The second order discretized stochastic process is harmonizable and can be characterized in the 

frequency domain if its autocorrelation function can be expressed by the Fourier-Stieltjes integral:

𝐸𝐸 𝑆𝑆 𝑛𝑛1 𝑆𝑆 𝑛𝑛2 = �
−1/2,1/2 2

𝑒𝑒𝑗𝑗2𝜋𝜋 𝜋𝜋1𝑛𝑛1+𝜋𝜋2𝑛𝑛2 d𝒢𝒢𝒮𝒮 𝜑𝜑1,𝜑𝜑2

 The spectral correlation function (Loève bifrequency spectrum) of the harmonizable discretized 
stochastic process is defined as:

𝒢𝒢𝒮𝒮 𝜑𝜑1,𝜑𝜑2 = 𝐸𝐸 �̂�𝑆 𝜑𝜑1 �̂�𝑆 𝜑𝜑2

 The relation between the autocorrelation function and the spectral correlation function is defined 
by two-dimensional DTFT:

𝐸𝐸 𝑆𝑆 𝑛𝑛1 𝑆𝑆 𝑛𝑛2 = �
−1/2,1/2 2

𝒢𝒢𝒮𝒮 𝜑𝜑1,𝜑𝜑2 𝑒𝑒𝑗𝑗2𝜋𝜋 𝜋𝜋1𝑛𝑛1+𝜋𝜋2𝑛𝑛2 d𝜑𝜑1d𝜑𝜑2

𝒢𝒢𝒮𝒮 𝜑𝜑1,𝜑𝜑2 = �
𝑛𝑛1=−∞

∞

�
𝑛𝑛2=−∞

∞

𝐸𝐸 𝑆𝑆 𝑛𝑛1 𝑆𝑆 𝑛𝑛2 𝑒𝑒−𝑗𝑗2𝜋𝜋 𝜋𝜋1𝑛𝑛1+𝜋𝜋2𝑛𝑛2
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Characteristics of stationary RP

 Distribution of the probability over RVs of the random process doesn’t 
depend of time

 Ensemble averaging of the random process by using expectation operator 

 Statistical mean and autocorrelation function doesn’t depend of time

 Spectral correlation function in a Fourier transform of the ACF

 Discretization of the stationary RP gives the periodic PSD and discrete ACF
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Cyclostationary random process
 The cyclostationary random process 𝒮𝒮 𝑡𝑡 is a non-stationary stochastic process whose statistical properties 

are periodically vary with respect to time. The period 𝑇𝑇0 is called a cycle, and its inverse 𝛼𝛼 = 1/𝑇𝑇0 is a
cyclic frequency. More generally, the process is almost-cyclostationary (ACS) if its statistical properties can 
be represented by a superposition of periodic functions with distinct cyclic frequencies 𝛼𝛼 ∈ 𝒜𝒜.

 The autocorrelation function of the ACS stochastic process posses the periodicity in time and can be 
expressed by the Fourier series expansion1:

ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏 = 𝐸𝐸 𝑆𝑆 𝑡𝑡 𝑆𝑆 𝑡𝑡 + 𝜏𝜏 = �
𝛼𝛼∈𝒜𝒜

𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏 𝑒𝑒𝑗𝑗2𝜋𝜋𝛼𝛼𝑡𝑡

 where 𝐸𝐸 � is the operator of ensemble averaging:

𝐸𝐸 𝑆𝑆 𝑡𝑡 𝑆𝑆 𝑡𝑡 + 𝜏𝜏 𝑇𝑇0 = lim
𝑁𝑁→∞

1
2𝑁𝑁 + 1

�
𝑛𝑛=−𝑁𝑁

𝑁𝑁

𝑆𝑆 𝑡𝑡 + 𝑇𝑇0 𝑆𝑆 𝑡𝑡 + 𝜏𝜏 + 𝑇𝑇0

 The Fourier coefficients of ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏 are called cyclic autocorrelation functions and can be defined by a 
time domain cyclic averaging for each known cyclic frequency:

𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏 = lim
𝑇𝑇→∞

1
𝑇𝑇
�
−𝑇𝑇/2

𝑇𝑇/2
ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏 𝑒𝑒−𝑗𝑗2𝜋𝜋𝛼𝛼𝑡𝑡d𝑡𝑡

1 W. A. Gardner, Introduction to Random Processes with Applications to Signals and Systems. 
Macmillan, New York, 1985 (2nd Edition McGraw-Hill, New York, 1990).
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𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏

𝜏𝜏/∆

𝛼𝛼 ⋅ ∆

0

1
2

3
4

5

−1
−2

−3
−4

−5
1−1

𝑅𝑅𝒮𝒮 𝑡𝑡, 𝜏𝜏

0

0−1 1

𝜏𝜏/∆

𝑡𝑡/∆

1

2

3

−1

−2

0

𝑡𝑡/∆

𝑆𝑆 𝑡𝑡

1 2 3 4 5 6 7 8 9

Pulse Amplitude Modulation
 Pulse amplitude modulated (PAM) signal

 Autocorrelation function  Cyclic autocorrelation function

0
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Cyclic correlation function

 The magnitude and phase of 𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏 represent amplitude and phase of the additive complex harmonic 
component at frequency 𝛼𝛼 for time lag 𝜏𝜏 contained in the autocorrelation function of the ACS stochastic 
process ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏 . For 𝛼𝛼 = 0 the cyclic autocorrelation function reduces to the autocorrelation function of 
the stationary random process 𝑅𝑅𝒮𝒮 𝜏𝜏 .

 For a zero-mean stochastic process 𝑚𝑚𝒮𝒮 𝑡𝑡 = 𝐸𝐸 𝑆𝑆 𝑡𝑡 = 0 the magnitude of the cyclic autocorrelation 
functions 𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏 → 0 as 𝜏𝜏 → ∞. If the mean function of the stochastic process 𝑚𝑚𝒮𝒮 𝑡𝑡 = 𝐸𝐸 𝑆𝑆 𝑡𝑡,𝜔𝜔 ≠ 0, 
then some 𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏 contain additive sinusoidal functions of 𝜏𝜏, which arise from the products of sinusoidal 
terms in 𝑚𝑚𝒮𝒮 𝑡𝑡 . Such ACS processes are called unpure and need to be processed accounting on such 
property of the process1.

 For cyclo-ergodic stochastic process the pure cyclic autocorrelation function called autocovariance function 
can be evaluated by synchronize removing the deterministic mean function from realization of the ACS 
process:

𝐶𝐶𝒮𝒮 𝛼𝛼, 𝜏𝜏 = lim
𝑇𝑇→∞

1
𝑇𝑇
�
−𝑇𝑇/2

𝑇𝑇/2
𝐸𝐸 𝑆𝑆 𝑡𝑡 𝑆𝑆 𝑡𝑡 + 𝜏𝜏 − 𝐸𝐸 𝑆𝑆 𝑡𝑡 𝐸𝐸 𝑆𝑆 𝑡𝑡 + 𝜏𝜏 𝑒𝑒−𝑗𝑗2𝜋𝜋𝛼𝛼𝑡𝑡d𝑡𝑡

1 J. Antoni, “Cyclostationarity by examples,” Mechanical Systems and Signal Processing 23(4),
2009, pp. 987–1036.
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Re 𝒱𝒱𝒮𝒮 𝑡𝑡, 𝑓𝑓 𝑉𝑉𝒮𝒮 𝛼𝛼, 𝑓𝑓

𝛼𝛼 ⋅ ∆

𝑓𝑓 ⋅ ∆𝑓𝑓 ⋅ ∆

𝑡𝑡/∆

Im 𝒱𝒱𝒮𝒮 𝑡𝑡, 𝑓𝑓

𝑓𝑓 ⋅ ∆

𝑡𝑡/∆

1

2

3

4

5

−1
−2
−3
−4
−50

1

2

3

4

5

0

0
1

2
3

4
5

Time-frequency Relation
 The almost-periodic time-variant spectrum of the ACS process is the Fourier transform of the 

cyclic autocorrelation function ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏 with respect to the lag parameter 𝜏𝜏:

𝒱𝒱𝒮𝒮 𝑡𝑡, 𝑓𝑓 = �
𝛼𝛼∈𝒜𝒜

𝑉𝑉𝒮𝒮 𝛼𝛼, 𝑓𝑓 𝑒𝑒𝑗𝑗2𝜋𝜋𝛼𝛼𝑡𝑡

 where the cyclic spectrum correlation function 𝑉𝑉𝒮𝒮 𝛼𝛼, 𝑓𝑓 can be defined by the Fourier transform 
of the autocorrelation function 𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏 with respect to the lag parameter 𝜏𝜏:

𝑉𝑉𝒮𝒮 𝛼𝛼, 𝑓𝑓 = �
ℝ
𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋 d𝜏𝜏
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Cyclic Spectrum

 The alternative approach for the evaluation of the cyclic spectrum correlation function is the averaging 
of the short-time Fourier transforms (STFT) of the stochastic process realizations 𝑆𝑆 𝑡𝑡 :

𝑋𝑋1/∆𝑓𝑓 𝑡𝑡, 𝑓𝑓 = �
𝑡𝑡−1/∆𝑓𝑓

𝑡𝑡+1/∆𝑓𝑓
𝑆𝑆 𝜉𝜉 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋d𝜉𝜉

 The averaging of 𝑋𝑋1/∆𝑓𝑓 𝑡𝑡, 𝑓𝑓 can be implemented by two strictly ordered successive limits:

𝑉𝑉𝒮𝒮 𝛼𝛼, 𝑓𝑓 = lim
∆𝑓𝑓→0

lim
𝑇𝑇→∞

∆𝑓𝑓
𝑇𝑇
�
−𝑇𝑇/2

𝑇𝑇/2
𝐸𝐸 𝑋𝑋1/∆𝑓𝑓 𝑡𝑡, 𝑓𝑓 𝑋𝑋1/∆𝑓𝑓 𝑡𝑡,𝛼𝛼 − 𝑓𝑓 d𝑡𝑡
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Wigner-Ville Cyclic Spectrum
 The Wigner-Ville spectrum for ACS stochastic processes:

𝑊𝑊𝒮𝒮 𝑡𝑡, 𝑓𝑓 = �
𝛼𝛼∈𝒜𝒜

𝑉𝑉𝒮𝒮 𝛼𝛼, 𝑓𝑓 + 𝛼𝛼/2 𝑒𝑒𝑗𝑗2𝜋𝜋𝛼𝛼𝑡𝑡

The Wigner-Ville spectrum of the ACS stochastic process can be 
expressed by the Fourier series expansion over the time t with 
frequencies 𝛼𝛼 ∈ 𝒜𝒜 and Fourier-series coefficients 𝑉𝑉𝒮𝒮 𝛼𝛼, 𝑓𝑓 + 𝛼𝛼/2 .

 The spectral correlation function (Loève bifrequency spectrum) 
of the ACS stochastic process is defined as:

𝒢𝒢𝒮𝒮 𝑓𝑓1, 𝑓𝑓2 = �
𝛼𝛼∈𝒜𝒜

𝑉𝑉𝒮𝒮 𝛼𝛼, 𝑓𝑓1 𝛿𝛿 𝑓𝑓2 + 𝑓𝑓1 − 𝛼𝛼

It concentrated in the countable set of lines with slope +1 on the 
bi-frequency plane. It means that ACS process have distinct 
spectral components that are correlated only if the spectral 
separation belongs to a countable set of cycle frequencies.

𝑊𝑊𝒮𝒮 𝑡𝑡, 𝑓𝑓

𝑓𝑓 ⋅ ∆

𝑡𝑡/∆

1

2

3

4

5

0
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 For two different ACS stochastic processes 𝒮𝒮1 𝑡𝑡 and 𝒮𝒮2 𝑡𝑡 are said to be jointly correlated if the 
second-order cross-correlation function

ℛ𝑌𝑌1𝑌𝑌2 𝑡𝑡, 𝜏𝜏 = 𝐸𝐸 𝑌𝑌1 𝑡𝑡 𝑌𝑌2 𝑡𝑡 + 𝜏𝜏 = �
𝛼𝛼∈𝒜𝒜12

𝑅𝑅𝑌𝑌1𝑌𝑌2 𝛼𝛼, 𝜏𝜏 𝑒𝑒𝑗𝑗2𝜋𝜋𝛼𝛼𝑡𝑡

at cycle frequencies 𝛼𝛼 ∈ 𝒜𝒜12 is defined by non-zero cyclic cross-correlation functions

𝑅𝑅𝑌𝑌1𝑌𝑌2 𝛼𝛼, 𝜏𝜏 = lim
𝑇𝑇→∞

1
𝑇𝑇
�
−𝑇𝑇/2

𝑇𝑇/2
ℛ𝑌𝑌1𝑌𝑌2 𝑡𝑡, 𝜏𝜏 𝑒𝑒

−𝑗𝑗2𝜋𝜋𝛼𝛼𝑡𝑡d𝑡𝑡

ℎ1 𝑡𝑡

ℎ2 𝑡𝑡

𝑡𝑡

𝑆𝑆 𝑡𝑡

𝑌𝑌1 𝑡𝑡

𝑌𝑌2 𝑡𝑡

ℛ𝑌𝑌1𝑌𝑌2 𝑡𝑡1, 𝑡𝑡2 = 𝐸𝐸 𝑌𝑌1 𝑡𝑡1 𝑌𝑌2 𝑡𝑡2 = �
ℝ2
ℎ1 𝑡𝑡1 − 𝜏𝜏1 ℎ2 𝑡𝑡2 − 𝜏𝜏2 𝐸𝐸 𝑆𝑆 𝜏𝜏1 𝑆𝑆 𝜏𝜏2 𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2 =

�
ℝ2
ℎ1 𝑡𝑡1 − 𝜏𝜏1 ℎ2 𝑡𝑡2 − 𝜏𝜏2 ℛ𝒮𝒮 𝜏𝜏1, 𝜏𝜏2 𝑑𝑑𝜏𝜏1𝑑𝑑𝜏𝜏2

Cross-Correlation Function
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Cross-Correlation Spectrum

 The cyclic spectrum cross-correlation 𝑉𝑉𝑌𝑌1𝑌𝑌2 𝛼𝛼, 𝑓𝑓 can be defined by the Fourier transform of the cyclic 
cross-correlation function 𝑅𝑅𝑌𝑌1𝑌𝑌2 𝛼𝛼, 𝜏𝜏 with respect to the lag parameter 𝜏𝜏:

𝑉𝑉𝑌𝑌1𝑌𝑌2 𝛼𝛼, 𝑓𝑓 = �
ℝ
𝑅𝑅𝑌𝑌1𝑌𝑌2 𝛼𝛼, 𝜏𝜏 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋 d𝜏𝜏

 It can be independently evaluated by the averaging of the short-time Fourier transforms (STFT) of the 
stochastic process realizations 𝑌𝑌1 𝑡𝑡 and 𝑌𝑌2 𝑡𝑡 :

𝑉𝑉𝑌𝑌1𝑌𝑌2 𝛼𝛼, 𝑓𝑓 = lim
∆𝑓𝑓→0

lim
𝑇𝑇→∞

∆𝑓𝑓
𝑇𝑇
�
−𝑇𝑇/2

𝑇𝑇/2
𝐸𝐸 𝑋𝑋1,1/∆𝑓𝑓 𝑡𝑡, 𝑓𝑓 𝑋𝑋2,1/∆𝑓𝑓 𝑡𝑡,𝛼𝛼 − 𝑓𝑓 d𝑡𝑡

where

𝑋𝑋𝑖𝑖,1/∆𝑓𝑓 𝑡𝑡, 𝑓𝑓 = �
𝑡𝑡−1/∆𝑓𝑓

𝑡𝑡+1/∆𝑓𝑓
𝑌𝑌𝑖𝑖 𝜉𝜉 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋d𝜉𝜉 ; 𝑖𝑖 = 1,2

 For the estimation of second-order statistical functions of ACS stochastic process need to have finite or 
“effectively finite” memory. It means that ACS process need to be a zero-mean stochastic process 
𝑚𝑚𝒮𝒮 𝑡𝑡 = 𝐸𝐸 𝑆𝑆 𝑡𝑡 = 0. 
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Relation between ACS Characteristics

𝑉𝑉𝒮𝒮 𝑓𝑓𝛼𝛼 = 0

Spectral
correlation

density

𝑉𝑉𝒮𝒮 𝛼𝛼,𝑓𝑓Fourier
series

𝑡𝑡 ↔ 𝛼𝛼𝑊𝑊𝒮𝒮 𝑡𝑡, 𝑓𝑓
Wigner-Ville

spectrum

Fourier
transform 𝜏𝜏 ↔ 𝑓𝑓 Fourier

transform 𝜏𝜏 ↔ 𝑓𝑓 Fourier
transform 𝜏𝜏 ↔ 𝑓𝑓

𝑅𝑅𝒮𝒮 𝜏𝜏𝛼𝛼 = 0𝑅𝑅𝒮𝒮 𝛼𝛼, 𝜏𝜏𝑡𝑡 ↔ 𝛼𝛼ℛ𝒮𝒮 𝑡𝑡, 𝜏𝜏
Fourier
series

Power
spectral
density

Autocorrelation
function

Cyclic
autocorrelation

function

Classical
autocorrelation

function
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Characteristics of CS Process

Mean function and 2D autocorrelation function of the CS process can be 
expressed by a superposition of periodic functions with different periods

 Cyclic autocorrelation function (ACF) can be obtained by the time-
domain cyclic averaging of the non-linear time-shift transformation

 To obtain the pure cyclic ACF the mean function need to be removed 
from the realizations of the random process

 Cyclic spectral correlation function can be evaluated by the frequency-
domain averaging of the frequency-shifted Fourier transforms of the 
measured realizations
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Device under test

The Intel® Galileo Board

400MHz 32-bit Intel® Pentium processor 

10/100 Ethernet connector 

Full PCI Express* mini-card slot

USB 2.0 Host connector 
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Device under test

 Test modes

Memory test OFF 

Memory test ON. Memory intensive process 
where random integer numbers are generated 
and will be saved in a random element in a large 
array allocated in the memory
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Near-field measurement setup
Langer near-field 10 mm probe

Two polarization of the probe: HX and HY

Scanning area 75 x 85 mm

5 mm scanning step

4 mm distance between PCB and probe

13 GHz Oscilloscope LeCroy SDA 813Zi-A

2.5 GSa/s sampling frequency

5 MSa data length
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Power hot spots of the DUT

HX polarization HY polarizationMemory

SMPSClock

Mesh grid

 Power level 63 mV2  Power level 27 mV2
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Memory hot spot

Measured signals  Power spectrum

Measured signals are nonperiodic
Memory test signals are random
Maximum of the PS at 118 MHz
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Memory test on

Bit duration is 5.2 ns
The shape of pulses is identical
Memory test process is cyclostationary
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Memory test off

Pulse duration is 5.2 ns
Sequence of single pulses
Period of signal is 7.7 mks
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Cyclic auto-correlation cumulant functions
Memory test on Memory test off

 Power level 165 mV2  Power level 25 mV2
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Cyclic auto-correlation cumulant functions

 Power spectrum  Cyclic CCCF

Maximum of cyclic CCCF corresponds to the cyclic frequency 190.5 MHz
 Cyclic frequency is suppressed in the power spectrum
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Cyclic cross-correlation cumulant functions

 Cyclic frequency α = 0  Cyclic frequency α = 190.5 MHz

Correlation interval corresponds to the pulse duration 5.2 ns
Both slices are nearly identical
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Spatial distribution of the cyclic CCCF

Reference 
probe
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Spatial distribution of the cyclic CCCF
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 Frequency, time and spatial characterization of the physical radiated 
sources have been obtained

 Characterization of the random data signals reveals hidden cyclic 
frequencies of the sequence

 Localization of the physical radiated sources of the DUT was performed

Conclusion Arduino
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 Xilinx FPGA Development Board Artix-7 XC7A35T

Device under test

Top sideBottom side
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Bit frequencies are 166.67 MHz and 156.25 MHz 

Experimental results

 Near-field measured signal
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 Amplitude spectrum of the measured signal

Experimental results
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Experimental results
 Cyclic autocorrelation cumulant functions

α1 = 1/Tbit1 = 166.67 MHz α2 = 1/Tbit2 = 156.25 MHz
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Experimental results

 Cyclic cross-correlation cumulant functions

α1 = 166.67 MHz α2 = 156.25 MHz
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Experimental results

α1 = 166.67 MHz α2 = 156.25 MHz

 Spatial distribution of cyclic CCCF
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Far-field measurement setup
Z

X

Y

R
ϕ

Direction of rotation Direction of rotation

 Distance 1 m  Distance 4 m
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Far-field measurements
 α1 = 166.67 MHz

 Distance 1 m

 Horizontal orientation of antenna 

 α2 = 156.25 MHz
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Far-field measurements
 α1 = 166.67 MHz

 Distance 4 m

 Horizontal orientation of antenna 

 α2 = 156.25 MHz
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Far-field measurements
 α1 = 166.67 MHz

 Distance 1 m

 Vertical orientation of antenna 

 α2 = 156.25 MHz
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Far-field measurements
 α1 = 166.67 MHz

 Distance 4 m

 Vertical orientation of antenna 

 α2 = 156.25 MHz
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 Cyclic cross-correlation cumulant functions can be used for separation 
of two different random bit sequences with different cyclic frequencies

 Special-time distribution was used for the localization of the 
transmission lines over the DUT surface

 For cyclostationary source separation the position of the reference 
probe need to be chosen for sensing radiations of both sources

Conclusion Artix
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Questions?


