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Electromagnetic Interference and Electronics

How to defend electronics from electromagnetic interference?

R.F.I. International

Electromagnetic Interference (EMI)

Electromagnetic Compatibility (EMC)



3

Electromagnetic Coupling to Enclosures and Circuits
A Complicated Problem

 Coupling of external radiation to 
computer chips is a complex process:

 Apertures

 Resonant cavities

 Transmission Lines

 Circuit Elements

 Cross-Talk

 System Size >> Wavelength

Chaotic Ray
Trajectories

What can we say about the nature of fields 
and induced voltages inside such a cavity?

 Statistical Description using Wave Chaos!!

Arbitrary Enclosure
(electrically large, with losses “1/Q”)

Rather than make predictions for a specific configuration,
determine a probability distribution function (PDF) of the
relevant quantities

http://www.qksrv.net/click-1300521-10281960
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Outline

• The Issue: Electromagnetic Interference

• Our Approach – A Wave Chaos Statistical Description

• The Random Coupling Model (RCM)

• Example of the RCM in Practice

• Scaled measurement system for investigating new RCM predictions

• Extension of the RCM to Stochastic Sources

• Conclusions
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Classical Chaos in Newtonian Billiards

Best characterized as “extreme sensitivity to initial conditions”

xi, pi xi+Dxi, pi +Dpi

Regular system

2-Dimensional “billiard” tables

Newtonian

particle

trajectories
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It makes no sense to talk about

“diverging trajectories” for waves

1) Waves do not have trajectories

Wave Chaos?

2) Linear wave systems can’t be chaotic

3) However in the semiclassical limit, you can think about rays

Wave Chaos concerns solutions of linear wave equations which, 

in the semiclassical limit, can be described by chaotic ray trajectories

In the ray-limit

it is possible to define chaos

“ray chaos”

Maxwell’s equations, Schrödinger’s equation are linear
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From Classical to Wave Chaos

wave

ray 

trajectory

Quantum

Classical

(chaos)

Semiclassical limit

(quantum chaos)
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How Common is Wave Chaos?

Consider an infinite square-well potential (i.e. a billiard) that shows chaos in the classical limit:

Solve the wave equation in the same potential well

Examine the solutions in the semiclassical regime: 0 <  << L

Hard Walls Bow-tie

L

Sinai billiard

Bunimovich stadium 

YES But how?

Bunimovich Billiard

Some example physical systems:

Nuclei, 2D electron gas billiards, acoustic waves in irregular blocks or rooms, electromagnetic waves in enclosures

Will the chaos present in the classical limit have an affect on the wave properties?
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Random Matrix Theory (RMT)
Wigner; Dyson; Mehta; Bohigas …

The RMT Approach:

Complicated Hamiltonian: e.g. Nucleus:  Solve 

Replace with a Hamiltonian with matrix elements chosen randomly

from a Gaussian distribution

Examine the statistical properties of the resulting Hamiltonians

This hypothesis has been tested in many systems:

Nuclei, atoms, molecules, quantum dots, acoustics (room, solid body, seismic), 

optical resonators, random lasers,…

Some Questions to Investigate:

Is this hypothesis supported by data in other systems?

What new applications are enabled by wave chaos?

Can losses / decoherence be included?

What causes deviations from RMT predictions?

Hypothesis:  Complicated Quantum/Wave systems that have chaotic classical/ray

counterparts possess universal statistical properties described by

Random Matrix Theory (RMT) “BGS Conjecture”

Cassati, 1980

Bohigas, 1984

 EH

Orthogonal (real matrix elements, b = 1)

Unitary (complex matrix elements, b = 2)

Symplectic (quaternion matrix elements, b = 4)
Universality Classes of RMT:
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Billiard

Incoming

Channel

Outgoing

Channel

Chaos and Scattering
Hypothesis: Random Matrix Theory quantitatively describes the statistical 

properties of all wave chaotic systems (closed and open)
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Electromagnetic Cavities: 

Complicated S11, S22, S21

versus frequency
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Transport in 2D quantum dots: 
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Universal Scattering Statistics

Despite the very different physical circumstances, these measured

scattering fluctuations have a common underlying origin!

Universal Properties of the Scattering Matrix:

Re[S]

Im[S]

RMT prediction: Eigenphases of S uniformly distributed on the unit circle
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Statistical Model of Impedance (Z) Matrix
S. Hemmady, et al., Phys. Rev. Lett. 94, 014102 (2005)

Port 1

Port 2

Other ports

Losses

Port 1

Free-space radiation

Resistance   RR()

ZR() = RR() + jXR ()

RR1()

RR2()

Statistical Model Impedance

Q -quality factor

D2
n - mean spectral spacing

Radiation Resistance   RRi()

win- Guassian Random variables

n - random spectrum (RMT)

System

parameters

Statistical

parameters

Zij ( )  
j


RRi

1/2 (n )
n

 RRj
1/2 (n )

Dn

2 winwin

 2 (1 jQ1)  n

2

Statistics governed by a single parameter:

L. K. Warne, et al., IEEE Trans. on Anten. and Prop. 51, 978 (2003)

X. Zheng, et al., Electromagnetics 26, 3 (2006); Electromagnetics 26, 37 (2006)

modes n

win wjn

Enclosure

∝=
𝝎𝟐

∆𝝎𝟐 𝑸
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The Most Common Non-Universal Effects:

1) Non-Ideal Coupling between external scattering states and internal modes (i.e. Antenna properties)

Universal Fluctuations are Usually Obscured by 

Non-Universal System-Specific Details

Wave-Chaotic systems are sensitive to details

Port 

Ray-Chaotic 

Cavity

Incoming 
wave

“Prompt” Reflection 
due to Z-Mismatch 

between antenna and 
cavity

Z-mismatch at interface of port 
and cavity.

Transmitted 
wave

2)    Short-Orbits between the antenna and fixed walls of the billiards
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The Random Coupling Model
http://anlage.umd.edu/RCM

Divide and Conquer!

Enclosure Problem

Port 1

Port 2Port 3Port 4

Port 5

Port i

Port j

Coupling Problem

Mean

part

Fluctuating Part 

(depends on a)

<Imx> = 1

<Rex > = 0

RadRad RiiXZZZ x
~

Solution: Random Matrix Theory;

Electromagnetic statistical properties are

governed by Loss Parameter a  k2/(Dkn
2 Q)  df3dB/Dfspacing

Solution: Radiation Impedance Matrix Zrad

+ Short Orbits

Electromagnetics 26, 3 (2006)
Electromagnetics 26, 37 (2006)
Phys. Rev. Lett. 94, 014102 (2005)
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IEEE Trans. EMC 54, 758 (2012)



17

Statistical Properties of Scattering Systems

8
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Universal Z (reaction) and S statistics

Inclusion of loss: Pa(Z), Pa(S)

a = 3-dB bandwidth / mean-spacing

Phys. Rev. Lett. 94, 014102 (2005)

Phys. Rev. E 74, 036213 (2006)

Removing Non-Universal Effects:

Sensitivity to Details
Coupling, Short Orbits
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Z. B. Drikas, et al., IEEE EMC 56, 1480 (2014)
J. Gil Gil, et al., IEEE EMC 58, 1535 (2016)

US Naval Research Laboratory collaboration

1. Inject microwaves at port 1 and measure induced voltage at port 2
2. Rotate mode-stirrer and repeat
3. Plot the PDF of the induced voltage and compare with RCM prediction

But this is at the limit of what we can test in our labs …

Test of the Random Coupling Model: Gigabox Experiment 
(NRL Collaboration)



20

Extensions to the Original Random Coupling Model

Extension Investigated Experimentally?

Short Orbits Yes (Zavg, Fading, Time-reversal)

Multiple Coupled Enclosures In progress

Nonlinear Systems
Yes (First results on billiard with 

nonlinear active circuit)

Coupling Through Apertures Yes (Analyzing data)

Mixed (regular + chaotic) systems In progress

Lossy Ports Yes (Radiation efficiency correction h)

Integration with FEM codes

… and making connections to:

Power Balance / SEA / DEA / Correlation Fcns. (U. Nottingham)

Reverberation Chamber studies (NIST/Boulder)

Electromagnetic Topology / BLT (U. New Mexico, ONERA)
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Coupled Lossy Cavities
• RCM predicts the transmission through N cavities coupled 

through apertures

• Experiment requires a chain of Gigaboxes

source

Enclosure 1

Loss Parameter a1

Enclosure N

Loss Parameter aN

Coupling

Trans-Impedance

G. Gradoni, T. M. Antonsen, and E. Ott, 
Phys. Rev. E 86, 046204 (2012).

Pipes, cables, ducts Ability to predict coupled voltage and power along an arbitrary chain of 
ray-chaotic cavities/environments/compartments

http://dx.doi.org/10.1103/PhysRevE.86.046204
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Scaling Properties of Maxwell’s Equations for Harmonic EM waves

For example, scaling the GigaBox down by a factor of s = 20 requires:

1 m x 1 m x 1 m Box 5 cm x 5 cm x 5 cm Box 

5 GHz measurement 100 GHz measurement

Wall conductivity  Wall conductivity s*

Maxwell’s equations are left invariant upon scaling:

𝒓′ =
𝒓

𝒔
𝝎′ = 𝒔𝝎 𝝈′ = 𝒔𝝈
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Scaled Coupled Cavities Simulation

Circular aperture

Dielectric 
sphere



mm-wave

mm-wave
windows

Teflon lens

Horn antenna WR10  75-110 GHz
WR3.4  220-330 GHz

Coax ~10 GHz

Coax ~10 GHz

Inside 
cryostat

Scaled 
Structure

Reference plane
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ONR/DURIP funded experimental setup

Frequency 
Extender
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Experimental Setup

Transmitter

Receiver

mm-wave
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Scaled 
Structure
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Scaled

Enclosure

(s = 40)

mm-wave

extender

mm-wave

extender

Scaled Enclosure Direct Injection Measurement

3 cm

Scaled Enclosure

(s = 20) with 

rotating perturber
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Cryogenic Mode Stirrer

Use cryogenic stepper motor to rotate a 

magnetic strip below scaled cavity, causing the 

stirrer panel inside cavity to rotate.

No holes in the cavity walls (no leakage)

Cryogenic 

stepper motor

Bar 

Magnet

Stirrer

Scaled enclosure wall
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Multiple Realizations of s = 20 Scaled Enclosure at Cryogenic Temperatures
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Motion of the Perturber (Cu Sheet) Inside

the s = 20 Scaled Enclosure
a = 19

a = 19

Cryogenic Results for the s = 20 Scaled Enclosure

Rotating

Perturber

Statistics with just

9 Realizations

75 – 110 GHz
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Measurement

Free-space 
propagation

A

Cavity
C

Free-space 
propagation

B

1 2

Sample

Equivalent

Lossy Lossy

Cryostat

Ports A & B will influence RCM obtained 𝛼 since they are lossy

Problem: The “ports” are lossy
The original RCM assumed loss-less ports
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Solution: Include the Radiation Efficiency 
of the Ports

𝑍𝑐𝑎𝑣 = 𝑗Im[𝑍𝑟𝑎𝑑] + Re[𝑍𝑟𝑎𝑑]𝜉 𝑍𝑐𝑎𝑣 = 𝑍𝑎𝑛𝑡 + 𝜂Re[𝑍𝑎𝑛𝑡](𝜉 − 1)
Lossy antenna 

𝑍𝑐𝑎𝑣 = 𝑗Im[𝑍𝑟𝑎𝑑] + Re 𝑍𝑟𝑎𝑑
1/2𝜉 Re 𝑍𝑟𝑎𝑑

1/2

Lossy path
𝑍𝑐𝑎𝑣 = 𝑍𝑎𝑛𝑡 + 𝑅1/2 𝜉 − 𝐼 𝑅1/2

𝑅 = 𝜂1/2Re 𝑍𝑎𝑛𝑡 𝜂
1/2

Scalar Form

Matrix Form

Radiation efficiency

B. D. Addissie, J. C. Rodgers and T. M. Antonsen, "Application of the random coupling model to lossy ports in complex enclosures," Metrology for 
Aerospace (MetroAeroSpace), 2015 IEEE, Benevento, 2015, pp. 214-219.

Lossless port: 𝜂 = 𝐼
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Scaled Enclosure Measurement Validation: 
Compare to NRL Full-Scale Experimental Setup

122.5 cm

66 cm

a = 27.9 cm
a

b

Port 2

b = 27.5 cm
Stirrer (Motor Controlled)

44.5 cm

3
0

.5
 c

m
90˚

2.1 cm

2.5 cm

75 GHz – 110 GHz  (s = 20)  3.7 GHz – 5.5 GHz

220 GHz – 330 GHz  (s = 40)  5.5 GHz – 8.25 GHz

WR-187 (G-Band)

WR-137 (C-Band)

127.5 cm

25 cm

25 cm

25 cm

c = 25 cm

c
c

c

Zach Drikas, Jesus Gil Gil, T. D. Andreadis @ NRL 

We measure two scaled versions:



Simulation 
with 𝛼 = 2.6

Simulation 
with 𝛼 = 1.9

Our ongoing work is to increase full-scale cavity’s 𝛼 to make it within the tunable 
range of 2.6 – 4.2

Single Cavity Experiment

𝑰𝒎 𝒛𝟏𝟐 𝑰𝒎 𝒛𝟏𝟐

𝑷
𝑰𝒎

𝒛
𝟏
𝟐

𝑷
𝑰𝒎

𝒛
𝟏
𝟐

s = 20 scaled cavity, cryogenic Full-scale cavity, room temperature



𝛼 =
𝑘2

𝑄Δ𝑘𝑛
2 =

𝑘3𝑉

2𝜋2𝑄

𝛼=3.2

𝛼=5.6

Variation of Loss Parameter a With Temperature
s = 20 scaled cavity
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Overview of the Scaled Cavity Measurement Project

Test the Random Coupling Model in a set of increasingly complicated

(and realistic) scenarios:

o Multiple coupled cavities

o Mixed (regular + chaotic) systems

o Irradiation through irregular apertures

o Evanescent coupling between enclosures

o etc.

Validation step: compare to full-scale measurements at NRL
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Multiple Cavity Experiment Under Development

3D Printed Scaled Structures:

Multiple Connected Enclosures

Ports

Scaled

Enclosures

Backplane

with Apertures



Overall 
picture



3-cavity 
cascade Perpendicular port

Parallel port

Lens for perpendicular port 
will be added later
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Extend RCM to Describe Stochastic Sources Located in Enclosures

1.  Define a Radiation Impedance Zrad for a spatially-extended and time-dependent source

2.  Determine the Radiation Impedance from measured fields near the source

3.  Create the RCM statistical Zcavity for the PCB in an enclosure

𝒖𝒑 𝒙

printed

circuit

board

trace 𝑰𝒑 𝒕

measurement

plane

Hz

ground

plane

4.  Calculate the interaction of one stochastic source with another through an enclosure

𝑯𝒛 𝒙 measurements determine 𝒖𝒑 𝒙

Calculate Zrad

free

space

Zrad

complex

enclosure

Zcavity

complex

enclosure

PCB

trace
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Ground plane

currents

image currents

 𝒏

A “port” now becomes a current trace and it’s image in the ground plane

𝒛 𝑰𝒑 𝒕 , 𝒖𝒑 𝒙 is the current trace profile function

In principle one can use measurements of 𝑯𝒛 𝒙 to deduce the trace profiles 𝒖𝒑 𝒙

D1 =
1k2 - kk

k2
+

kk

k2k0

2
(k0

2 - k2 )

FT of the trace profile

Z cav = i Im Z rad( )+ Rradé
ë

ù
û
1/2

×x × Rradé
ë

ù
û
1/2

The radiation impedance can be written in terms of the trace profiles 𝒖𝒑 𝒙

The cavity impedance expression is the same as before, except for the updated 𝒁𝒓𝒂𝒅 and

correlations between the random coupling variables

wn are zero mean, unit width, un-correlated Gaussian random variables

𝒌𝒌

All trace-to-trace correlations are built in to Zrad

Details of Extending RCM to Describe Stochastic Sources Located in Enclosures
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Conclusions

The Random Coupling Model constitutes a comprehensive (statistical) description of the 

wave properties of wave-chaotic systems in the short wavelength limit

We believe the RCM is of value to the EMC / EMI community for predicting the statistics

of induced voltages on objects in complex enclosures, for example.

Extension to Stochastic Sources looks promising

A new measurement system employing scaled structures enables new extensions of RCM:
Multiple connected enclosures

Irradiation through irregular apertures
Systems with mixed (regular and chaotic) properties

Systems with evanescent coupling

RCM Review articles:

G. Gradoni, et al., Wave Motion 51, 606 (2014)

Z. Drikas, et al., IEEE Trans. EMC 56, 1480 (2014)

Research funded by ONR

ONR/DURIP

AFOSR / AFRL Center of Excellence

anlage@umd.edu

http://anlage.umd.edu/RCM

http://index.html/
mailto:anlage@umd.edu
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