Quantitative Understanding of Induced Voltage Statistics for Electronics in Complex Enclosures COST MC Meeting, Toulouse, France

13 February, 2017

ACCREDIT ACTION IC 1407 IC1407 Advanced Characterisation and Classification of Radiated Emissions in Densely Integrated Technologies (ACCREDIT)

MANAGEMENT COMMITTEE MEETING

Toulouse, France

13 - 14 February 2017

Bo Xiao¹ Zach Drikas² Jesus Gil Gil² T. D. Andreadis² Tom Antonsen¹ Ed Ott¹ Steven M. Anlage¹

Random Coupling Model website: http://anlage.umd.edu/RCM

Research funded by ONR

ONR/DURIP

¹ University of Maryland, USA ² US Naval Research Laboratory

AFOSR / AFRL Center of Excellence

Electromagnetic Interference and Electronics

How to defend electronics from electromagnetic interference?

Outline

- The Issue: Electromagnetic Interference
- Our Approach A Wave Chaos Statistical Description
- The Random Coupling Model (RCM)
- Example of the RCM in Practice
- Scaled measurement system for investigating new RCM predictions
- Extension of the RCM to Stochastic Sources
- Conclusions

Classical Chaos in Newtonian Billiards

Best characterized as "extreme sensitivity to initial conditions"

Wave Chaos?

1) Waves do not have trajectories

It makes no sense to talk about "diverging trajectories" for waves

2) Linear wave systems can't be chaotic

Maxwell's equations, Schrödinger's equation are linear

3) However in the semiclassical limit, you can think about <u>rays</u>

In the ray-limit it is possible to define chaos

"ray chaos"

Wave Chaos concerns solutions of <u>linear</u> wave equations which, in the semiclassical limit, can be described by chaotic ray trajectories

From Classical to Wave Chaos

How Common is Wave Chaos?

Consider an infinite square-well potential (i.e. a billiard) that shows chaos in the classical limit:

Solve the wave equation in the same potential well

Examine the solutions in the <u>semiclassical regime</u>: $0 < \lambda \ll L$

Some example physical systems:

Nuclei, 2D electron gas billiards, acoustic waves in irregular blocks or rooms, electromagnetic waves in enclosures

Will the chaos present in the classical limit have an affect on the wave properties? YES But how?

Chaos and <u>Scattering</u>

Hypothesis: Random Matrix Theory quantitatively describes the statistical

properties of <u>all</u> wave chaotic systems (closed and **open**)

11

Universal Scattering Statistics

Despite the very different physical circumstances, these measured scattering fluctuations have a common underlying origin!

- The Issue: Electromagnetic Interference
- Our Approach A Wave Chaos Statistical Description
- The Random Coupling Model (RCM)
- Example of the RCM in Practice
- Scaled measurement system for investigating new RCM predictions
- Extension of the RCM to Stochastic Sources
- Conclusions

Statistical Model of Impedance (Z) Matrix

S. Hemmady, *et al.*, Phys. Rev. Lett. <u>94</u>, 014102 (2005) L. K. Warne, *et al.*, IEEE Trans. on Anten. and Prop. <u>51</u>, 978 (2003) X. Zheng, *et al.*, Electromagnetics <u>26</u>, 3 (2006); Electromagnetics <u>26</u>, 37 (2006)

Universal Fluctuations are Usually Obscured by Non-Universal System-Specific Details Wave-Chaotic systems are sensitive to <u>details</u>

The Most Common Non-Universal Effects:

- 1) Non-Ideal Coupling between external scattering states and internal modes (i.e. Antenna properties)
- 2) Short-Orbits between the antenna and fixed walls of the billiards

The Random Coupling Model

http://anlage.umd.edu/RCM Divide and Conquer!

Coupling Problem

Enclosure Problem

Statistical Properties of Scattering Systems

Removing Non-Universal Effects: Sensitivity to Details Coupling, Short Orbits

Phys. Rev. E **80**, 041109 (2009) Phys. Rev. E **81**, 025201(R) (2010)

- The Issue: Electromagnetic Interference
- Our Approach A Wave Chaos Statistical Description
- The Random Coupling Model (RCM)
- Example of the RCM in Practice
- Scaled measurement system for investigating new RCM predictions
- Extension of the RCM to Stochastic Sources
- Conclusions

Test of the Random Coupling Model: Gigabox Experiment

(NRL Collaboration)

- 1. Inject microwaves at port 1 and measure induced voltage at port 2
- 2. Rotate mode-stirrer and repeat
- 3. Plot the PDF of the induced voltage and compare with RCM prediction

But this is at the limit of what we can test in our labs ...

Z. B. Drikas, et al., IEEE EMC <u>56</u>, 1480 (2014) J. Gil Gil, et al., IEEE EMC <u>58</u>, 1535 (2016) US Naval Research Laboratory collaboration

Extensions to the Original Random Coupling Model

Extension	Investigated Experimentally?
Short Orbits	Yes (Z _{avg} , Fading, Time-reversal)
Multiple Coupled Enclosures	In progress
Nonlinear Systems	Yes (First results on billiard with nonlinear active circuit)
Coupling Through Apertures	Yes (Analyzing data)
Mixed (regular + chaotic) systems	In progress
Lossy Ports	Yes (Radiation efficiency correction η)
Integration with FEM codes	
and making connections to: Power Balance / SEA / DEA	A / Correlation Fcns. (U. Nottingham)

Electromagnetic Topology / BLT (U. New Mexico, ONERA)

Reverberation Chamber studies (NIST/Boulder)

20

Outline

- The Issue: Electromagnetic Interference
- Our Approach A Wave Chaos Statistical Description
- The Random Coupling Model (RCM)
- Example of the RCM in Practice
- Scaled measurement system for investigating new RCM predictions
- Extension of the RCM to Stochastic Sources
- Conclusions

Coupled Lossy Cavities

- RCM predicts the transmission through N cavities coupled through apertures
- Experiment requires a chain of Gigaboxes

Scaling Properties of Maxwell's Equations for Harmonic EM waves

Maxwell's equations are left invariant upon scaling:

$$\vec{r}' = \frac{\vec{r}}{s}$$
 $\omega' = s\omega$ $\sigma' = s\sigma$

For example, scaling the GigaBox down by a factor of **s** = 20 requires:

Scaled Coupled Cavities Simulation

Experimental Setup

Scaled Enclosure Direct Injection Measurement

Cryogenic Mode Stirrer

Use cryogenic stepper motor to rotate a magnetic strip below scaled cavity, causing the stirrer panel inside cavity to rotate.

No holes in the cavity walls (no leakage)

Multiple Realizations of s = 20 Scaled Enclosure at Cryogenic Temperatures

Cryogenic Results for the s = 20 Scaled Enclosure

Motion of the Perturber (Cu Sheet) Inside the s = 20 Scaled Enclosure

Problem: The "ports" are lossy

The original RCM assumed loss-less ports

Ports A & B will influence RCM obtained α since they are lossy

Solution: Include the Radiation Efficiency of the Ports

B. D. Addissie, J. C. Rodgers and T. M. Antonsen, "Application of the random coupling model to lossy ports in complex enclosures," *Metrology for Aerospace (MetroAeroSpace), 2015 IEEE*, Benevento, 2015, pp. 214-219.

Scaled Enclosure Measurement Validation: Compare to NRL Full-Scale Experimental Setup

Single Cavity Experiment

s = 20 scaled cavity, cryogenic

Full-scale cavity, room temperature

Our ongoing work is to increase full-scale cavity's α to make it within the tunable range of 2.6 – 4.2

Variation of Loss Parameter α With Temperature s = 20 scaled cavity

Overview of the Scaled Cavity Measurement Project

Test the Random Coupling Model in a set of increasingly complicated (and realistic) scenarios:

- Multiple coupled cavities
- Mixed (regular + chaotic) systems
- Irradiation through irregular apertures
- Evanescent coupling between enclosures
- o etc.

Validation step: compare to full-scale measurements at NRL

Ports

Backplane with Apertures

Scaled Enclosures

Outline

- The Issue: Electromagnetic Interference
- Our Approach A Wave Chaos Statistical Description
- The Random Coupling Model (RCM)
- Example of the RCM in Practice
- Scaled measurement system for investigating new RCM predictions
- Extension of the RCM to Stochastic Sources
- Conclusions

Extend RCM to Describe Stochastic Sources Located in Enclosures

1. Define a Radiation Impedance Z^{rad} for a spatially-extended and time-dependent source

2. Determine the Radiation Impedance from measured fields near the source

- 3. Create the RCM statistical Z_{cavity} for the PCB in an enclosure
- 4. Calculate the interaction of one stochastic source with another through an enclosure

Details of Extending RCM to Describe Stochastic Sources Located in Enclosures

A "port" now becomes a current trace and it's image in the ground plane

 $I_p(t), u_p(\vec{x})$ is the current trace profile function

0

In principle one can use measurements of $H_z(\vec{x})$ to deduce the trace profiles $u_p(\vec{x})$

The radiation impedance can be written in terms of the trace profiles $u_p(\vec{x})$

FT of the trace profile

$$Z_{pp'}^{rad}(k_0 = \omega / c) = \frac{1}{2} \sqrt{\frac{\mu}{\varepsilon}} \int \frac{d^3k}{(2\pi)^3} \frac{ik_0}{k_0^2 - k^2} \, \overline{\mathbf{u}}_p^*(\mathbf{k}) \underline{\underline{\Delta}}_1 \cdot \overline{\mathbf{u}}_{p'}(\mathbf{k})$$
$$\underline{\underline{D}}_1 = \frac{1k^2 - \mathbf{k}\mathbf{k}}{k^2} + \frac{\mathbf{k}\mathbf{k}}{k^2k_0^2}(k_0^2 - k^2)$$

The cavity impedance expression is the same as before, except for the updated Z^{rad} and correlations between the random coupling variables

$$\underline{\underline{Z}}^{cav} = i \operatorname{Im}\left(\underline{\underline{Z}}^{rad}\right) + \underbrace{\underline{\hat{e}}}_{\underline{\underline{Z}}}^{rad} \underbrace{\underline{\hat{b}}}^{1/2} \times \underbrace{\underline{X}}_{\underline{\underline{z}}} \times \underbrace{\underline{\hat{e}}}_{\underline{\underline{Z}}}^{rad} \underbrace{\underline{\hat{b}}}^{1/2} \qquad \qquad \underline{\underline{\xi}} = \frac{i}{\pi} \sum_{n} \frac{\Delta k^2}{(k_0^2 - k_n^2)}$$

 w_n are zero mean, unit width, un-correlated Gaussian random variables

All trace-to-trace correlations are built in to Zrad

The Maryland Wave Chaos Group

Graduate Students (current + former)

Jen-Hao Yeh LPS

James Hart Lincoln Labs

Biniyam Taddese FDA

Bo Xiao

Mark Herrera **Heron Systems**

Ming-Jer Lee World Bank

Trystan Koch

Bisrat Addissie

Not Pictured: Paul So Sameer Hemmady Xing (Henry) Zheng

Jesse Bridgewater

Min Zhou

Ziyuan Fu

Faculty

Tom Antonsen

Steve Anlage

NRL Collaborators: Tim Andreadis, Lou Pecora, Hai Tran, Sun Hong, Zach Drikas, Jesus Gil Gil

Funding: ONR, AFOSR, DURIP

Ed Ott

Undergraduate Students

Ali Gokirmak Eliot Bradshaw John Abrahams Gemstone Team TESLA

Post-Docs

Gabriele Gradoni **Matthew Frazier Dong-Ho Wu**

John Rodgers NRL, Naval Academy, UMD

Conclusions

The Random Coupling Model constitutes a comprehensive (statistical) description of the wave properties of wave-chaotic systems in the short wavelength limit

We believe the RCM is of value to the EMC / EMI community for predicting the statistics of induced voltages on objects in complex enclosures, for example. Extension to Stochastic Sources looks promising

A new measurement system employing scaled structures enables new extensions of RCM: Multiple connected enclosures Irradiation through irregular apertures Systems with mixed (regular and chaotic) properties Systems with evanescent coupling <u>anlage@umd.edu</u> http://anlage.umd.edu/RCM

Research funded by ONR

ONR/DURIP

AFOSR / AFRL Center of Excellence

RCM Review articles:

G. Gradoni, et al., Wave Motion 51, 606 (2014)

Z. Drikas, et al., IEEE Trans. EMC 56, 1480 (2014)

fin