Far-Field Measurements and Characterization of the Cyclostationary Unintentional Stochastic Radiations from the Digital Electronic Device

Prof. Yury Kuznetsov, Dr.-Ing. Andrey Baev
Moscow Aviation Institute (National Research University)
Russian Federation

Short Term Scientific Mission 21.01.2017 – 06.02.2017
at The Institute for Nanoelectronics,
Technische Universitaet Muenchen
Outline

• Spatial localization of the pass between the source and the load on the PCB surface

• Characterization of the cyclostationary properties of the PCB pseudorandom emissions

• Characterization of the far-field pattern for the unintentional stochastic emissions of the PCB

• Parametric identification of the ultra wideband near-field probes in time and frequency domains
Measurement setup

➢ Time-domain measurement system

- Digital oscilloscope
- Amplifiers
- Scanning probe
- Scanning plane
- Reference probe
- Device under test (DUT)
Device under test

- Atlys Spartan-6 Training Board
Device under test

Test signal: pseudo random bit sequence (PRBS)
Measurement setup

- Langer EMV-Technik RF-R 50-1 magnetic field probes
- Frequency band from 30 MHz up to 3 GHz
Data analysis

- Pseudo random bit sequence (PRBS)

\[s_T(t) = \sum_{n=0}^{N-1} a_n s_0(t - n\Delta) = s_T(t - lT), \forall l = 0, \pm 1, \pm 2, \ldots, \]

\[\Delta = 3\text{ns}; \quad T = N\cdot\Delta; \quad N = 8192 \]
Data analysis

Autocorrelation function of the PRBS

\[R_{ST}(\tau) = \frac{1}{N\Delta} \int_{0}^{N\Delta} s_T(t)s_T(t - \tau) \, dt \]
Data analysis

Averaged signal in the reference probe

\[\mu_X[m][k] = \frac{L}{K} \sum_{j=0}^{(K/L)-1} X[m][k - jL] \]

- \(L = N \cdot \Delta \cdot F \)
- \(K = 30L \)
- \(F = 10 \text{ GSa/s} \) – sampling frequency
Data analysis

Autocorrelation function of the reference probe’s signal

\[r_{X_m}[k] = \frac{1}{L} \sum_{l=0}^{L} \mu_{X_m}[l] \mu_{X_m}[l - k] \]
Data analysis

- Autocorrelation function of the reference probe’s signal
Cyclostationary analysis

➢ Periodic autocorrelation function

\[\rho_X[i, v] = \frac{L}{K} \sum_{j=0}^{(K/L) - 1} x[i + \frac{v}{2} - jL] x[i - \frac{v}{2} - jL] \]

\(i/F \) – global time
\(v/F \) – relative time
Cyclostationary analysis

- Cyclic autocorrelation function

\[
R_x^L[v] = \frac{1}{L} \sum_{i=-(L-1)/2}^{(L-1)/2} \rho_x[i, v] e^{-j\frac{2\pi i v}{L}} \quad \text{for } l \cdot F/L \text{ – cyclic frequency}
\]
Cyclostationary analysis

Cyclic spectrum

\[S_X^l[m] = \frac{1}{L} \sum_{v=-(L-1)/2}^{(L-1)/2} R_X^l[v] e^{-j\frac{2\pi vm}{N}} \]

\(m \cdot F / L \) – cyclic frequency
Data analysis

Cross-correlation function of the reference probe’s signal and PRBS

\[\rho_{SX_m}[n] = E\{S[k]X_m[k-n]\} = \frac{L}{K} \sum_{j=0}^{(K/L)-1} \sum_{k=0}^{L-1} S[k]X_m[k-n-jL] \]
Experimental results

- Measurement grid

- 20 x 23 points
- 5 mm step
- H_X and H_Y polarization
- $M = 20 \cdot 23 = 460$
- $m = 1 \ldots M$
Experimental results

- Time evolution of the cross correlation function

- 8192 bit sequence
Experimental results

➤ Time evolution of the cross correlation function

✔ 1024 bit sequence
Experimental results

➤ Measurement along the strip line
Experimental results

✓ Measurement points along the strip line
Experimental results

Delay of the cross correlation function

\[\rho_{X_{ref}X_m}[n] = E\{X_{ref}[k]X_m[k - n]\} \]
Experimental results

- Dependence on the distance between DUT and near-field probe
Experimental results

- **Vertical polarization**
- **Horizontal polarization**

- distance 1...15 mm
- step size 1 mm
Outline

• Spatial localization of the pass between the source and the load on the PCB surface

• Characterization of the cyclostationary properties of the PCB pseudorandom emissions

• **Characterization of the far-field pattern for the unintentional stochastic emissions of the PCB**

• Parametric identification of the ultra wideband near-field probes in time and frequency domains
Anechoic chamber

- Antenna R&S HL 562E
- 30 MHz … 6 GHz
- Amplifier 30 dB
Data analysis

- Measured signal
Data analysis

- Cross-correlation function of the antenna’s signal and PRBS
Anechoic chamber

- Vertical polarization
- Horizontal polarization

✓ distance 1 m
Experimental results

- Vertical polarization
- Horizontal polarization

✓ distance 1 m
Anechoic chamber

- Vertical polarization
- Horizontal polarization

✓ distance 3 m
Experimental results

- Vertical polarization
- Horizontal polarization

✓ distance 3 m
Outline

• Spatial localization of the pass between the source and the load on the PCB surface
• Characterization of the cyclostationary properties of the PCB pseudorandom emissions
• Characterization of the far-field pattern for the unintentional stochastic emissions of the PCB
• Parametric identification of the ultra wideband near-field probes in time and frequency domains
Measurement setup

- Frequency-domain measurement system

![Diagram of measurement setup]

- Vector network analyzer
- Amplifier
- Near-field probe
- Matched load
- Strip line
Probe identification

- S-parameters of Langer RF-R 50-1 probe
Probe identification

Impulse response of the near-field probe

- RF-R 50-1
- 10 mm
Probe identification

- Step response of the near-field probe

- RF-R 50-1
- Ø 10 mm
Measurement setup

- Time-domain measurement system

- Synchronization

- Digital oscilloscope

- Amplifier

- Near-field probe

- Matched load

- Strip line

- Pulse generator
Probe identification

✓ Langer RF-R 50-1
✓ Ø 10 mm

✓ Langer RF-R 3-2
✓ Ø 3 mm
Probe identification

➢ Step responses of the near-field probes

✓ RF-R 50-1
✓ Ø 10 mm

✓ RF-R 3-2
✓ Ø 3 mm
Probe identification

- Frequency characteristic of the near-field probes
Acknowledgment

This work was hosted by the Institute for Nanoelectronics, Technische Universitaet Muenchen

We would like to express our gratitude to Dr. Johannes Russer and Michael Haider for their help, support and discussions