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Outline

• The Problem: Electromagnetic Interference

• Our Approach – A Wave Chaos Statistical Description

• The Random Coupling Model (RCM)

• Examples of the RCM in Practice

• Conclusions
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Electromagnetic Interference and

High-Power Microwave Effects on Electronics
How to defend electronics from electromagnetic interference?

R.F.I. International

Electromagnetic Interference (EMI)

Electromagnetic Compatibility (EMC)
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Electromagnetic Compatibility Issues in Automobiles

Germany Japan

How to defend electronics from electromagnetic interference?
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What Happens to Electronics Housed in Electrically-Large Enclosures?

Examples: Aircraft cockpit, Rooms, Automobile engine electronics, Computer, etc.    System size >> Wavelength

Empirical evidence suggests that some electronics are susceptible under some conditions …

Many failure modes have been identified:

Internal circuit signal disruption – spurious signal generation

Front-end diodes produce baseband + harmonic signal input

Burnout of traces, contacts, components
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Electromagnetic Coupling to Enclosures and Circuits
A Complicated Problem

 Coupling of external radiation to 

computer chips is a complex process:

 Apertures

 Resonant cavities

 Transmission Lines

 Circuit Elements

 System Size >> Wavelength

Chaotic Ray

Trajectories

What can we say about the nature of fields and induced 

voltages inside such a cavity?

 Statistical Description using Wave Chaos!!

Arbitrary Enclosure

(with losses “1/Q”)

Rather than make predictions for a specific configuration,

determine a probability distribution function (PDF) of the

relevant quantities

http://www.qksrv.net/click-1300521-10281960
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Outline

• The Problem: Electromagnetic Interference

• Our Approach – A Wave Chaos Statistical Description

• The Random Coupling Model (RCM)

• Examples of the RCM in Practice

• Conclusions



9

It makes no sense to talk about

“diverging trajectories” for waves

1) Waves do not have trajectories

Wave Chaos?

2) Linear wave systems can’t be chaotic

3) However in the semiclassical limit, you can think about rays

Wave Chaos concerns solutions of linear wave equations which, 

in the semiclassical limit, can be described by chaotic ray trajectories

In the ray-limit

it is possible to define chaos

“ray chaos”

Maxwell’s equations, Schrödinger’s equation are linear
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From Classical to Wave Chaos

wave

ray 

trajectory

Quantum

Classical

(chaos)

Semiclassical limit

(quantum chaos)
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Random Matrix Theory (RMT) and Wave Chaos
Wigner; Dyson; Mehta; Bohigas …

The RMT Approach:

Complicated Hamiltonian: e.g. Nucleus:  Solve 

Replace with a Hamiltonian with matrix elements chosen randomly

from a Gaussian distribution

Examine the statistical properties of the resulting Hamiltonians

This hypothesis has been tested in many systems:

Nuclei, atoms, molecules, quantum dots, acoustics (room, solid body, seismic), 

optical resonators, random lasers,…

Some Questions:

Is this hypothesis supported by data in other systems?

What new applications are enabled by wave chaos?
Can losses / decoherence be included?

What causes deviations from RMT predictions?

Hypothesis:  Complicated Quantum/Wave systems that have chaotic classical/ray

counterparts possess universal statistical properties described by

Random Matrix Theory (RMT) “BGS Conjecture”

Cassati, 1980

Bohigas, 1984

 EH

Orthogonal (real matrix elements, b = 1)

Unitary (complex matrix elements, b = 2)

Symplectic (quaternion matrix elements, b = 4)
Universality Classes of RMT:
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Where is Wave Chaos Found?
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The Difficulty in Making Predictions in Wave Chaotic Systems…
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The extreme sensitivity of the properties of

wave chaotic systems to small perturbations

suggests a statistical approach (RMT)

The Random Coupling Model incorporates the

underlying chaos into a quantitative statistical

description of the wave properties of real systems

Ray-

Chaotic

Enclosure
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Induced Voltage Statistical Distributions 

for Objects in an Arbitrary Enclosure

Arbitrary Enclosure

(with losses “1/Q”)
Port 1

Port 2Port 3Port 4

Port 5

Generalized Port

Concept

Port i

Port j

Our approach treats all objects of interest as “ports”

Incident rf energy enters the enclosure through one or more ports

The energy reverberates and is absorbed by one or more ports inside the enclosure

Formulate a quantitative statistical theory of absorbed energy

http://www.qksrv.net/click-1300521-10281960
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N-Port Description of an Arbitrary Scattering System

N – Port 

Scattering 

System

N Ports

 Voltages and Currents,

 Incoming and Outgoing Waves
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Traditional Approach to Describing Wave Chaotic 

Scattering Systems – the Scattering Matrix

C. M. Marcus (1992)

2-D Electron Gas

electron mean free path >> system size

electron wavelength << system size

Ballistic Quantum Transport

Quantum interference  Fluctuations in G ~ e2/h

“Universal Conductance Fluctuations”

Landauer-

Büttiker
 


1 2

1 1

2
22 N

n

N

m

nmS
h

e
G

Nuclear scattering: 

Ericson fluctuations

Wd

d

Proton energy

Compound nuclear reaction

Incoming Channel/Port

Outgoing Channel/Port

In contrast, our approach uses the Impedance (Z) 

description of wave scattering
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Outline

• The Problem: Electromagnetic Interference

• Our Approach – A Wave Chaos Statistical Description

• The Random Coupling Model (RCM)

• Examples of the RCM in Practice

• Conclusions
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Statistical Model of Impedance (Z) Matrix
S. Hemmady, et al., Phys. Rev. Lett. 94, 014102 (2005)

Port 1

Port 2

Other ports

Losses

Port 1

Free-space radiation

Resistance   RR()

ZR() = RR() + jXR ()

RR1()

RR2()

Statistical Model Impedance

Q -quality factor

D2
n - mean spectral spacing

Radiation Resistance   RRi()

win- Guassian Random variables

n - random spectrum

System

parameters

Statistical

parameters

Zij ( )  
j


RRi

1/2 (n )
n

 RRj
1/2 (n )

Dn

2 winwin

 2 (1+ jQ1)  n

2

L. K. Warne, et al., IEEE Trans. on Anten. and Prop. 51, 978 (2003)

X. Zheng, et al., Electromagnetics 26, 3 (2006); Electromagnetics 26, 37 (2006)

modes n

win wjn
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The Most Common Non-Universal Effects:

1) Non-Ideal Coupling between external scattering states and internal modes (i.e. Antenna/Port properties)

Universal Fluctuations are Usually Obscured by 

Non-Universal System-Specific Details

Port 

Ray-Chaotic 

Cavity

Incoming 
wave

“Prompt” Reflection 
due to Z-Mismatch 

between antenna and 
cavity

Z-mismatch at interface of port 
and cavity.

Transmitted 
wave

2)    Short-Orbits between the antenna and fixed walls of the billiards
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The Random Coupling Model
Divide and Conquer!

Enclosure Problem

Port 1

Port 2Port 3Port 4

Port 5

Port i

Port j

Coupling Problem

Mean

part

Fluctuating Part 

(depends on a)

<Imx> = 1

<Rex > = 0

RadRad RiiXZZZ x++
~

Solution: Random Matrix Theory;

Electromagnetic statistical properties are

governed by Loss Parameter a  k2/(Dkn
2 Q)  df3dB/Dfspacing

Solution: Radiation Impedance Matrix Zrad

+ Short Orbits

Electromagnetics 26, 3 (2006)
Electromagnetics 26, 37 (2006)
Phys. Rev. Lett. 94, 014102 (2005)
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IEEE Trans. EMC 54, 758 (2012)
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xiRiXZ avgavgcavity +

Universally Fluctuating Complex

Quantity with Mean 1 (0) for the 

Real (Imaginary) Part.

Predicted by RMT

Semiclassical

Expansion over

Short Orbits

Complex Radiation Impedance

(characterizes the non-universal coupling)
Index of ‘Short Orbit’

of length l Stability of orbit

Action of orbit

Theory of Non-Universal Wave Scattering Properties
Including Imperfect Coupling and Short Orbits

James Hart, T. Antonsen, E. Ott, Phys. Rev. E 80, 041109 (2009)

Port

Zcavity

Port

ZRad

The waves do

not return to the port

Perfectly absorbing

boundary
Cavity

Orbit Stability Factor:

►Segment length

►Angle of incidence

►Radius of curvature of wall

Assumes foci and caustics are absent!

Orbit Action:

►Segment length

►Wavenumber

►Number of Wall Bounces

1-Port, Loss-less case:


+

+
b(l)

iLlik

lblbRadRadavg
PorteDpRZZ
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9.1a

16a

3.6a

9.1a

Inclusion of loss: Pa(Z)

a = 3-dB bandwidth / mean-spacing

Fyodorov+Savin JETP Lett. 80, 725 (2004)

Hemmady, et al., Phys. Rev. Lett. 94, 014102 (2005)

Fyodorov+Savin+Sommers J Phys. A 38, 10731 (2005)

Hemmady, et al., Phys. Rev. E 74 , 036213 (2006)

Mean of Pa(z)

Variance of Pa(z)

Universal Impedance (Z) Statistics in the Presence of Loss

a

1
 1a

Comparison of data (symbols) and RMT (solid lines)

   1ˆRe zE l    0ˆIm zE l Independent of a
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Fyodorov+Savin JETP Lett. 80, 725 (2004)

Hemmady, et al., Phys. Rev. Lett. 94, 014102 (2005)

Fyodorov+Savin+Sommers J Phys. A 38, 10731 (2005)

Hemmady, et al., Phys. Rev. E 74 , 036213 (2006)
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Outline

• The Problem: Electromagnetic Interference

• Our Approach – A Wave Chaos Statistical Description

• The Random Coupling Model (RCM)

• Examples of the RCM in Practice

• Conclusions
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Microwave Cavity Analog of a 

2D Quantum Infinite Square Well

Table-top experiment!

Ez

Bx By

( )

boundariesatwith

VE
m

n

nnn

0

0
2

2

2



+
 Schrödinger equation

boundariesatEwith

EkE

nz

nznnz

0

0

,

,

2

,

2



+
Helmholtz equation

Stöckmann + Stein, 1990

Doron+Smilansky+Frenkel, 1990

Sridhar, 1991

Richter, 1992

d ≈ 8 mm

An empty “two-dimensional” electromagnetic resonator

Bow-Tie Billiard

A. Gokirmak, et al. Rev. Sci. Instrum. 69, 3410 (1998)

~ 50 cm

The only propagating

mode for f < c/d:
Metal walls
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The Experiment:

A simplified model of wave-chaotic scattering systems

A thin hollow metal box  

ports

Side view

21.6 cm

43.2 cm

0.8 cm

λ

Ez

Coaxial

cable
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Microwave-Cavity Analog of a 2D

Infinite Square Well 
with Coupling to Scattering States

Network Analyzer [measures Scattering (S)-matrix vs. frequency]

Thin Microwave Cavity PortsElectromagnet

We measure from 500 MHz – 19 GHz, covering about 750 modes in the semi-classical limit
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Data and Theory smoothed

with the same 125-cm 

(240 MHz window) 

low-pass filter

Nonuniversal Properties Captured by the Extended RCM
Empty Cavity Data

Theory includes all orbits to 200 cm length
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J.-H. Yeh, et al., Phys. Rev. E 81, 025201(R) (2010); J.-H. Yeh, et al., Phys. Rev. E 82, 041114 (2010).

43 cm

Random Matrix Theory

describes the fluctuations 

away from Z(L)

1 2

a ~ 1
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The Random Coupling Model Applied to 3-Dimensional Enclosures

Uncovering Universal 

Impedance Statistics

Conductor 

(Copper tube) at 
port 2

Monopole antenna at 

port 1

tMeasuremen RadZ
 Induced Voltage Statistics

Z. B. Drikas, et al., IEEE Trans. Electromag. Compat. 56, 1480 (2014)

US Naval Research Laboratory collaboration

1. Inject microwaves at port 1 and measure induced voltage at port 2

2. Rotate mode-stirrer and repeat

3. Plot the PDF of the induced voltage and compare with RCM prediction
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RCM Predictions for Electrically-Large Apertures
G. Gradoni, et al.

Enclosure

Incident Wave

( ) 2/12/1
Im

radradradcav GiGYiY x+
RCM for

admittance

Port 2

Port 1

Aperture Modes

US Naval Research Laboratory collaboration
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Induced Voltage Statistics for Enclosures with Mixed 

Regular and Chaotic Behavior

Chaotic EigenmodeRegular Eigenmode

Im(Z12)

Old RCM

New RCM

Numerical (Monte Carlo)

Relevant variables:

• 3D enclosures with parallel walls

• Illuminate through regular and irregular apertures

….
Ming Jer Lee, et al., Phys. Rev. E 87, 062906 (2013)

Random Coupling Model still works!

𝒁𝒊𝒋 = 𝒁𝒊𝒋,𝑹𝒆𝒈𝒖𝒍𝒂𝒓 + 𝒁𝒊𝒋,𝑪𝒉𝒂𝒐𝒕𝒊𝒄
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Outline

• The Problem: Electromagnetic Interference

• Our Approach – A Wave Chaos Statistical Description

• The Random Coupling Model (RCM)

• Examples of the RCM in Practice

• Related Work

• Conclusions
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Conclusions

Many thanks to: P. Brouwer, M. Fink, S. Fishman, 

Y. Fyodorov, T. Guhr, U. Kuhl, P. Mello, R. Prange, A. Richter, 

D. Savin, F. Schafer, T. Seligman, L. Sirko, H.-J. Stöckmann, 

J.-P. Parmantier

The Random Coupling Model constitutes a comprehensive (statistical) description of the 

wave properties of wave-chaotic systems in the short wavelength limit

We believe the RCM is of value to the EMC / EMI community for predicting the statistics

of induced voltages on objects in complex enclosures, for example.

This description should apply to any wave system in the 

‘mesoscopic’, ‘mid-frequency’, … limit

Acoustics

Mechanical vibrations

Quantum mechanical

Electromagnetic

…

RCM Review articles:

G. Gradoni, et al., Wave Motion 51, 606 (2014)

Z. Drikas, et al., IEEE Trans. EMC 56, 1480 (2014)

Research funded by ONR,

ONR/DURIP, and AFOSR

http://index.html/
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