

Time domain simulation and the FDTD method

Prof. Salvador González García Dr. Luis Díaz Angulo Miguel Ruiz Cabello

Electromagnetic Group of the UGR (Spain) <u>salva@ugr.es</u>

□ PART I: TUTORIAL ON FDTD

PART II: SEMBA & OPEN-SEMBA: YET ANOTHER SOLVER FOR EMC ANALYSIS

PART I: TUTORIAL

Deterministic methods in EMC FDTD fundamentals DGTD: an affordable alternative to FDTD Dispersion, dissipation, stability, convergence Requirements for a practical tool: PMLs, sources, materials & sub-cell models Computer implementation Applications Towards affordable sensitivity analyses

3D

FULL-

WAVE

NUMERICAL METHODS IN EMC

Low Frequency Band (<100 λ)</p>

o <u>Time Domain</u>: Differential (FDTD, FIT, TLM), Variational (DGTD, FVTD, FETD), hybrid (FE-FDTD), Integral TDIE (EFIE, MFIE –PWTD-)

o <u>Frequency Domain</u>: Variational (FEFD), Integral (EFIE, MFIE, MPIE) MoM w/o MLFMA

CIRCUITAL: LUMPED AND MTLN

High Frequency Band (> 100 λ)

o Frequency Domain: PO, GTD, UTD, PW

FDTD, DGTD, FVTD

SPACE

- Differential (FD): for maturity, scalability, ease of meshing, PARALLELIZABILITY ...
- Variational (DG, FV): for higher order accuracy and hpadaptivity

TIME

 Differential & Explicit: for HPC, Marching-on-intime: LF, RK4…

EXPLICIT SCHEMES IN TD: ADVANTAGES

- Local Marching-on-in-time algorithm: updating the unknowns only require past unknowns at neighbour cells
- **Simple** formulation (no matrix inversions).
- Physics (materials, currents...) naturally treated: dielectric, magnetic, frequency dependent, nonlinear, anisotropic,...
- A single run can cover the whole frequency band
- Straightforwardly parallelizable

EXPLICIT SCHEMES IN TD: DRAWBACKS

- Overall order dominated by time integration: eg: 2nd-order for Leap-frog.
- Conditionally stable: Maximum time-step bounded by space-step (unconditionally stable alternatives exist: implicit!)
- May last to converge for LF (can be combined with prediction techniques: Prony, permittivity scaling ...)
- Large CPU: brute-force sensitivity analysis

THOUSANDS OF PAPERS. DOZENS OF BOOKS

FDTD: FINITE DIFFERENCE TIME DOMAIN METHOD

Direct discretization of Maxwell curl equations by 2nd-order finite diferences for all derivatives, in a non co-located staggered space-time mesh

E.g.: For a single-component

$$\frac{\partial E_x}{\partial t} = \frac{1}{\varepsilon} \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z} - \sigma_x^{\ e} E_x - J_x \right)$$
Apply finite difference approximations:

$$\frac{E_x^{n+1}(i,j,k) - E_x^n(i,j,k)}{\Delta t} = \frac{1}{\varepsilon_x(i,j,k)} \left[\frac{H_z^{n+1/2}(i,j,k) - H_z^{n+1/2}(i,j-1,k)}{\Delta y} \right]$$

$$-\frac{1}{\varepsilon_x(i,j,k)} \left[\frac{H_y^{n+1/2}(i,j,k) - H_y^{n+1/2}(i,j,k-1)}{\Delta z} \right]$$

$$-\frac{1}{\varepsilon_x(i,j,k)} \left[\frac{E_x^{n+1}(i,j,k) - H_y^{n+1/2}(i,j,k)}{\Delta z} \right]$$

$$\frac{E_x^{n+1}(i,j,k)}{\varepsilon_x(i,j,k)} = \left[\frac{1}{\Delta t} - \frac{\sigma_x^e(m)}{2\varepsilon_x(m)} \right]$$

$$E_x^{n+1}(i,j,k) = \left[\frac{1}{\varepsilon_x(m)} - \frac{\sigma_x^e(m)}{\varepsilon_x(m)} \right]$$

$$E_x^{n+1}(i,j,k) = \left[\frac{1}{\varepsilon_x(m)} - \frac{\sigma_x^e(m)}{\varepsilon_x(m)} \right]$$

$$E_x^{n+1}(i,j,k) = \left[\frac{1}{\varepsilon_x(m)} - \frac{\sigma_x^e(m)}{\varepsilon_x(m)} \right]$$

$$\frac{1}{\varepsilon_x(m)\Delta z}$$

$$\left[H_y^{n+1/2}(i,j,k) - H_y^{n+1/2}(i,j,k-1) \right]$$

$$-\frac{1}{\varepsilon_x(m)\Delta z}$$

$$\left[H_y^{n+1/2}(i,j,k) - H_y^{n+1/2}(i,j,k-1) \right]$$

$$\frac{1}{\varepsilon_x(m)}$$

$$\frac{1}{\varepsilon_x(m)} - \frac{1}{\varepsilon_x(m)}$$

$$\frac{1}{\varepsilon_x(m)} - \frac{1}{\varepsilon_x(m)}$$

DGTD, FVTD DISCONTINUOUS GALERKIN TIME DOMAIN

Maxwell curl E-H equations in variational form tested/expanded (Galerkin) in HIGH-ORDER hierarchal basis on 1st/2nd-order tetrahedrons

$$\varepsilon_r \varepsilon_0 \frac{\partial \boldsymbol{E}}{\partial t} = \nabla \times \boldsymbol{H} \quad , \quad \mu_r \mu_0 \frac{\partial \boldsymbol{H}}{\partial t} = -\nabla \times \boldsymbol{E}$$

The field is allowed to be DISCONTINUOUS at the boundary, but its **flux** is CONTINUOUS

 $c_o \Delta t < \min\left(\frac{h_l}{2}\sqrt{\varepsilon_n \mu_n} \frac{1}{(n+1)^2}\right)$

 $\mu \mathbb{M} d_t H^m + (\sigma_m \mathbb{M} - \mathbb{F}_{\nu h}) H^m + \mathbb{F}_{\nu h}^+ H^{m+} = -(\mathbb{S} - \mathbb{F}_{\kappa e}) E^m - \mathbb{F}_{\kappa e}^+ E^{m+} - M_{s\kappa} + J_{s\nu}$ $\varepsilon \mathbb{M} d_t E^m + (\sigma_e \mathbb{M} - \mathbb{F}_{\nu e}) E^m + \mathbb{F}_{\nu e}^+ E^{m+} = (\mathbb{S} - \mathbb{F}_{\kappa h}) H^m + \mathbb{F}_{\kappa h}^+ H^{m+} - J_{s\kappa} - M_{s\nu}$

Explicit marching-in-time

NODAL AND VECTOR DGTD

Testing & expanding (Galerkin) in vector

 $\vec{E}(\vec{r}) = \sum_{i=1}^{N_{edges}} E_i \vec{W}_i \quad , \text{ e.g. Whitney's } \vec{W}_i = \xi_j \nabla \xi_k - \xi_k \nabla \xi_j$ Curl-conforming

or (nodal) functions: Lagrange polynomials

SIMILAR BEHAVIOR: **RIEMANN-LIKE** FLUXES ATTENUATE SPURIOUS (BADLY RESOLVED) SOLUTIONS REPORTED IN NODAL CONTINUOUS FEM

KEY FEATURES IN A NUMERICAL SCHEME

CONSISTENCY CONVERGENCE STABILITY

Lax theorem For a consistent scheme, stability and convergence are equivalent

STABILITY & CAUSALITY: COURANT-FRIEDRICHS-LEWY

4D numerical causal hypercone (Minkowski's) must COMPRISE the analytical one (based in Lax convergence-stabilty equivalence theorem).

Practical corollary: E and H field components must be ALWAYS inter-dependent in the numerical scheme. E.g. if a E component uses some H, the latter must also use it.

CONSISTENCY: GLOBAL 2ND-ORDER

Consistency

truncation error must converge to 0 for increments tending to 0

Analytical

$$\partial_t \vec{\psi} = \tilde{\mathcal{R}}_T \vec{\psi} - \vec{\mathcal{K}}$$

Yee FDTD
$$\frac{\overrightarrow{\Psi}^{n+1} - \overrightarrow{\Psi}^n}{\Delta t} = \widetilde{R}_T \overrightarrow{\Psi}^{n+1/2} - \overrightarrow{K}^{n+1/2}$$

Analytical

$$\mathbf{D} = \partial_t \vec{\psi}^{n+1/2} - \tilde{R}_T \vec{\psi}^{n+1/2}$$

Yee FDTD

$$O(\Delta t^{2}\partial_{t}^{3}, \Delta x^{2}\partial_{x}^{3}, \Delta y^{2}\partial_{y}^{3}, \Delta z^{2}\partial_{z}^{3}) = \frac{\overrightarrow{\psi}^{n+1} - \overrightarrow{\psi}^{n}}{\Delta t} - \widetilde{R}_{T} \overleftarrow{\psi}^{n+1/2}$$

DISPERSION & STABILITY: VON NEUMANN ANALYSIS

Plane waves are propagated by lossless source-free Maxwell's equations in propagate in TEM modes

$$\vec{\Psi}(x, y, z, t) = \vec{\Psi}_0 e^{j(\omega t - \vec{\beta} \cdot \vec{r})}$$
$$\vec{\beta} = \left(\beta_x, \beta_y, \beta_z\right), \ \vec{r} = (x, y, z)$$

With an analytical dispersion relationship

$$\mu\varepsilon\omega^2 = \left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)$$

DISPERSION & STABILITY: VON NEUMANN ANALYSIS

$$\frac{1}{c^2 \Delta t^2} \sin^2 \left(\Omega \frac{\Delta t}{2} \right) = \frac{1}{\Delta x^2} \sin^2 \left(\beta_x \frac{\Delta x}{2} \right) + \frac{1}{\Delta y^2} \sin^2 \left(\beta_y \frac{\Delta y}{2} \right) + \frac{1}{\Delta z^2} \sin^2 \left(\beta_z \frac{\Delta z}{2} \right)$$

For a Cauchy problem with given wavenumber

$$\sin\left(\Omega\frac{\Delta t}{2}\right) \le c\Delta t \sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}}$$
$$\operatorname{Im}\left\{\Omega\right\} < 0 \Leftrightarrow s = CFLN = c\Delta t \sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}} \le 1 \Longrightarrow \operatorname{Im}\left\{\Omega\right\} = 0$$

STABILITY IMPLIES NON-DISSIPATION

Von-Neumann stability requires a non-increasing exponential, and hence imposes an UPPER LIMIT for the time-step determined by the spatial discretization steps.

EXAMPLE: A 1D MATLAB CODE DISPERSION $\frac{c\Delta t}{\Delta x} = 0.7$

```
- function Yee 1D
 writerObj = VideoWriter('yefdtd.avi');
  open(writerObj);
 DX=1;
 % Time step: stability
 DT=1.0*DX;
  % Courant numbers:
 CFLN=DT/DX:
  % Computational domain and plane-wave data
 n1Y=1;n2Y=400;g=10;x0=4*g;
 grid=linspace(1,n2Y,n2Y);
  % Cauchy initial conditions
 E = exp(-(grid.*DX-x0).^{2}./g^{2});
 H=-exp(-(grid.*DX-x0).^2./g^2);
  % Time-stepping
- for n=1:10000
     % E-field updating Yee zone
     E(n1Y+1:n2Y-1)=E(n1Y+1:n2Y-1) + CFLN.* ...
          (H(n1Y+1:n2Y-1)-H(n1Y:n2Y-2));
      % H-field updating at Yee zone
     H(n1Y:n2Y-1) = H(n1Y:n2Y-1) + ...
          CFLN.*(E(n1Y+1:n2Y)-E(n1Y:n2Y-1));
      % Plotting
      if (mod(n,20)==0)
          plot((1:1:n2Y),E);
          axis([0 n2Y -1 1]); frame=getframe;
          writeVideo(writerObj,frame);
      end
  end
 close(writerObj);
  end
```


DISPERSION: DOMINATED BY TIME INTEGRATION ORDER (LF2 or RK4)

A Spurious-Free Discontinuous Galerkin Time-Domain Method for the Accurate Modeling of Microwave Filters

zone dominated by temporal integration error

10

LFDG (p=1)

LFDG (p=2) LFDG (p=3)

10

DG (p=1) DG (p=2) DG (p=3)

J. Alvarez; L. Angulo; A. Rubio Bretones; S. G. Garcia

IEEE Transactions on Microwave Theory and Techniques

Year: 2012, Volume: 60, Issue: 8

FDTD vs DGTD: PROs & CONs

Comparative summary of numerical methods with typical formulations

	FDTD	FVTD	DGTD	FEMTD (other	s)	
Order of accuracy ^{a b}	$h^{2,c}$	h	h^{2p+1}	h^{2p}		
Geometry adaptivity	Nod	Yes	Yes	Yes		
Spurious modes	No	Yes/No	Yese/Nof	Yes ^g /No ^h		
Energy conservative ^b	Yes	Yes	Yese/Nof	Yes		
Explicit form	Yes	Yes	Yes	No ⁱ		
LTS, IMEX or similar	No	Yes	Yes	Nø		
Parallel. simplicity	High	High	High	Low		
Memory usage ^j	High	Very High	Low	Very Low		
Memory locality	Very High	Low	Highk	High ^k		
Uses dual mesh	Yes	No	Not	No		
Allows non-conformal mesh	No	Yes	Yes	No	the state	Efficient Antenn
h adaptivity	Yes	Yes	Yes	Yes	discontinuous Galerkin time-	Modeling by DC1
p adaptivity	No	No	Yes	Yes	domain method.	mousing by but

DGTD method has a comparable computational cost to FDTD for practical applications, but preserving most of the advantages of finite element methods

A strained dispectation for the series may approximately a series of the series of the

Forum for Electromagnetic Research Methods and Application Technologies (FERMAT) ART-2015-Vol10-Jul_Aug
Discontinuous Galerkin Time Domain Methods in Computational Electrodynamics: State of the Art

FDTD: TOWARDS A PRACTICAL SIMULATION TOOL

SOME IMPLEMENTATION DETAILS

HOW TO CHOOSE THE SAMPLING?

Rule of the thumb for the number of cells per wavelength (PPW) in FDTD:

 $\frac{\lambda}{\min{\{\Delta s\}}} \ge 10 \& \frac{T}{\Delta y} \ge 10 \text{ (automatic in time if fulfilled in space)}$

$$\lambda = \frac{\lambda_0}{\sqrt{\frac{1}{2}\left(\sqrt{1+Q^{-2}}+1\right)}}, \ \lambda_0 = \frac{c}{f} \qquad Q = 1/\tan\delta = \frac{\omega\varepsilon}{\sigma}$$

SOURCES: TOTAL/SCATTERED FIELD ZONING

105C

TAFLOVE'S LINEARITY INTERPRETATION

$$\begin{split} E_{z}^{n+1}(i_{i},j) |_{\textbf{total}} &= C_{a}(i_{i},j)E_{z}^{n}(i_{i},j) |_{\textbf{total}} + C_{b}(i_{i},j) \\ \left(H_{y}^{n+\frac{1}{2}}(i_{i}+\frac{1}{2},j) |_{\textbf{total}} - H_{y}^{n+\frac{1}{2}}(i_{i}-\frac{1}{2},j) |_{\textbf{scattered}} + \right. \\ \left.H_{x}^{n+\frac{1}{2}}(i_{i},j-\frac{1}{2}) |_{\textbf{total}} - H_{x}^{n+\frac{1}{2}}(i_{i},j+\frac{1}{2}) |_{\textbf{total}}\right) \\ \left. - C_{b}(i_{i},j)H_{y}^{n+\frac{1}{2}}(i_{i}-\frac{1}{2},j) |_{\textbf{incident}} \end{split}$$

REVERBERATING CHAMBER STOCHASTIC SOURCES

send

COSE

PERFECTLY MATCHED LAYER ABSORBING BOUNDARY CONDITIONS

A fictious shell is added to the 3D FDTD domain with "impedance" matched free-space for **ALL FREQUENCIES** and for ALL ANGLES OF **INCIDENCE**

JOURNAL OF COMPUTATIONAL PHYSICS 114, 185-200 (1994)

A Perfectly Matched Layer for the Absorption of Electromagnetic Waves

JEAN-PIERRE BERENGER

STRETECHED PML INSTEAD OF SPLIT BERENGER PMLs

$$j\omega\varepsilon_{x}E_{x} + \sigma_{x}^{e}E_{x} = \frac{1}{s_{ey}}\frac{\partial H_{z}}{\partial y} - \frac{1}{s_{ez}}\frac{\partial H_{y}}{\partial z}$$
$$j\omega\varepsilon_{y}E_{y} + \sigma_{y}^{e}E_{y} = \frac{1}{s_{ez}}\frac{\partial H_{x}}{\partial z} - \frac{1}{s_{ex}}\frac{\partial H_{z}}{\partial x}$$
$$j\omega\varepsilon_{z}E_{z} + \sigma_{z}^{e}E_{z} = \frac{1}{s_{ex}}\frac{\partial H_{y}}{\partial x} - \frac{1}{s_{ey}}\frac{\partial H_{x}}{\partial y}$$

CAN ALSO ABSORB EVANESCENT WAVES BY TUNING:

$$s_{\alpha} = \kappa_{\alpha} + \frac{\sigma_{\alpha}}{\eta_{\alpha} + \mathbf{j}\omega\chi_{\alpha}}$$

CONVOLUTION PML (CPML): AN EFFICIENT FDTD IMPLEMENTATION OF THE CFS-PML FOR ARBITRARY MEDIA

J. Alan Roden¹ and Stephen D. Gednev²

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS / Vol. 27, No. 5, December 5 2000

MODAL ABSORPTION IN WAVEGUIDES WITH PML

DISPERSIVE MATERIALS

VECTOR FITTING: poles/residues (complex conjugate pairs)

 $\nabla \times \vec{H}(\omega) = j\omega\varepsilon(\omega)\vec{E}(\omega) \implies \nabla \times \vec{H}(t) = \varepsilon_{\infty}\partial_{t}\vec{E}(t) + \sigma\vec{E}(t) + \sum_{k=1}^{N}\vec{P}_{k}(t)$

VECTOR FITTINGInto di $\chi(\omega) = \sum_{k=1}^{N} \frac{R_k}{j\omega - p_k}$ • Piece $\operatorname{Re}\{p_k\} \leq 0$ (Stable)• AuxilEquation• Quantil

Into discrete TD, either:

Piecewise Linear

Recursive Convolution

Auxiliary Differential
 Equation

$$\begin{cases} \vec{P}_{k}(t) = R_{k}\vec{E}(t) + R_{k}p_{k}\int_{t'=-\infty}^{t'=t} e^{p_{k}(t-t')}\vec{E}(t')dt' & \mathsf{PLRC} \\ \partial_{t}\vec{P}_{k}(t) - p_{k}\vec{P}_{k}(t) = R_{k}\partial_{t}\vec{E}(t) & \mathsf{ADE} \end{cases}$$

$\xi_{xx} \left(\underbrace{H_y^{n+\frac{1}{2}}(i+\frac{1}{2},j,k+\frac{1}{2})}_{(-\frac{n+\frac{1}{2}}{2},j,k-\frac{1}{2})} - \underbrace{H_y^{n+\frac{1}{2}}(i+\frac{1}{2},j,k-\frac{1}{2})}_{n+\frac{1}{2}} \right) +$

 $\begin{aligned} \xi_{xy} & \left(H_x^{n+\frac{1}{2}}(i+\frac{1}{2},j,k+\frac{1}{2}) - H_x^{n+\frac{1}{2}}(i+\frac{1}{2},j,k-\frac{1}{2}) \right) & - \\ \xi_{xz} & \left(H_x^{n+\frac{1}{2}}(i+\frac{1}{2},j+\frac{1}{2},k) - H_x^{n+\frac{1}{2}}(i+\frac{1}{2},j-\frac{1}{2},k) \right) & + \\ \xi_{xz} & \left(H_y^{n+\frac{1}{2}}(i+1,j,k) - H_y^{n+\frac{1}{2}}(i,j,k) \right) & - \\ \xi_{xy} & \left(H_z^{n+\frac{1}{2}}(i+1,j,k) - H_z^{n+\frac{1}{2}}(i,j,k) \right) \end{aligned}$

ISOTROPIC MATER

 $\underbrace{E_x^{n+1}(i+\frac{1}{2},j,k)}_{x} = \underbrace{E_x^n(i+\frac{1}{2},j,k)}_{x} + \frac{\Delta t}{\Delta} \bigg\}$

 $\xi_{xx} \left(\underbrace{H_z^{n+\frac{1}{2}}(i+\frac{1}{2},j+\frac{1}{2},k)}_{2} - \underbrace{H_z^{n+\frac{1}{2}}(i+\frac{1}{2},j-\frac{1}{2},k)}_{2} \right) - \underbrace{H_z^{n+\frac{1}{2}}(i+\frac{1}{2},j-\frac{1}{2},k)}_{2} \right) - \underbrace{H_z^{n+\frac{1}{2}}(i+\frac{1}{2},j-\frac{1}{2},k)}_{2} - \underbrace{H_z^{n+\frac{1}{2}}(i+\frac{1}{2},j-\frac{1}{2},k)}_{2} \right) - \underbrace{H_z^{n+\frac{1}{2}}(i+\frac{1}{2},j-\frac{1}{2},k)}_{2} - \underbrace{H_z^{n+$

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 12, DECEMBER 1996

On the Application of Finite Methods in Time Domain to Anisotropic Dielectric Waveguides

Salvador González García, T. Materdey Hung-Bao, Rafael Gómez Martín, and Bernardo García Olmedo

33

2195

Fig. 1. (a) Photoconductive antenna formed by a photolayer of LT-GaAs on SI-GaAs substrate and a dielectric lens under the substrate. (b) PEC contact on the photozone. (c) The photozone. (d) Computational domain simulated.

Vol. 32, No. 10 / October 2015 / Journal of the Optical Society of America B

Time-domain numerical modeling of THz receivers based on photoconductive antennas

E. MORENO^{1,*}, Z. HEMMAT^{2,*}, J.B. ROLDÁN^{3,*}, M. F. PANTOJA^{1,*}, A. R. BRETONES^{1,*}, AND S. G. GARCÍA^{1,*}

FDTD: TOWARDS A PRACTICAL SIMULATION TOOL

SUB-CELL EXTENSIONS COMMON IN EMC

STAIRCASE MESHING

Staircasing error. It is the error introduced of the cubical spatial discretization of the FDTD method.

STAIRCASE ALTERNATIVES

Conformal methods aim to mitigate staircasing error.

S. Dey and R. Mittra, "A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects," IEEE Microwave Guided Wave Lett., vol. 7, pp.273–275, Sept. 1997.

CONFORMAL FDTD

IEEE Microwave and Wireless Components Letters

A New efficient and stable 3D Conformal FDTD

Miguel R. Cabello, Luis D. Angulo, J. Alvarez, Member, IEEE, A. Rubio Bretones, Senior Member, IEEE and Salvador G. Garcia, Senior Member, IEEE

Bistatic RCS of a NASA almond at *1* GHz. Comparison results between staircase, conformal relaxed and MoM/DGTD.

L2 error norm with respect to MoM/DGTD versus the number of Points Per Wavelength (PPW)

DISPERSIVE SURFACES / METASURFACES

Carbon-fibber composites, laminates & sandwiches

Protective metallic meshes

Micro / nanocomposites

ANISOTROPIC DISPERSIVE THIN-PANELS 2-SIDED SURFACE IMPEDANCE BOUNDARY CON-DITIONS (**IBC**) (LOSSY MULTILAYERS)

$$\begin{bmatrix} \mathbf{E}_{y0}(\omega) \\ H_{z0}(\omega) \end{bmatrix} = \prod_{i=1}^{m} \begin{bmatrix} \Phi_{i}(\omega) \end{bmatrix} \begin{bmatrix} \mathbf{E}_{yd}(\omega) \\ H_{zd}(\omega) \end{bmatrix} \Rightarrow \begin{bmatrix} \mathbf{E}_{y0}(\omega) \\ \mathbf{E}_{yd}(\omega) \end{bmatrix} = \begin{bmatrix} Z(\omega) \end{bmatrix} \begin{bmatrix} H_{z0}(\omega) \\ -H_{zd}(\omega) \end{bmatrix}$$
$$\begin{bmatrix} \Phi_{i}(\omega) \end{bmatrix} = \begin{bmatrix} \cosh(\gamma_{i}d_{i}) & \sinh(\gamma_{i}d_{i}) \\ \eta_{i}^{-1}\sinh(\gamma_{i}d_{i}) & \cosh(\gamma_{i}d_{i}) \end{bmatrix} \quad \eta_{i} = \sqrt{\mu_{i} \left(\varepsilon_{i} + \frac{\sigma_{i}}{j\omega}\right)^{-1}}, \quad \gamma_{i} = j\omega \sqrt{\mu_{i} \left(\varepsilon_{i} + \frac{\sigma_{i}}{j\omega}\right)}$$

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY. A New Model for the FDTD Analysis of the Shielding Performances of Thin Composite Structures

Univ. of Nottingham, April 2016

Maria Sahrina Sarta Member IFFF

STABILITY Boundedness

 $\lim_{t \to \infty} [Z(t)] \neq \infty \iff \operatorname{Re} \{p_k\} \le 0$

PASSIVITY NO Energy generation

$$\Leftrightarrow \lambda(\omega) = \operatorname{eig}\left\{\tilde{Z}(\omega) + \tilde{Z}^{H}(\omega)\right\} > 0$$

https://www.sintef.no/projectweb/vectfit/

VECTOR FITTING $Z(\omega) = Z_{\infty} + \sum_{k=1}^{N} \frac{R_k}{i\omega - p_k} \in \text{Reals}$ $Z_{k}(t) = \text{Fourier}^{-1} \left\{ \frac{R_{k}}{j\omega - p_{k}} + \frac{R_{k}^{*}}{j\omega - p_{k}^{*}} \right\} =$ $e^{\operatorname{Re}\{p_k\}t} 2R_k \cos(\operatorname{Im}\{p_k\}t)$

CAUSALITY **Response AFTER excitation** $Z(\omega)$ analytic $\forall \omega > 0 \iff$ $\lim \frac{Z(\omega)}{1-\omega} = 0 \& Z_{r,i}(\omega) = \mp \frac{1}{2} P_{Counter} \left[\int_{0}^{+\infty} \frac{Z_{i,r}(\omega)}{1-\omega} d\omega' \right]$

$$\frac{1}{\omega} = 0 \& Z_{r,i}(\omega) = +\frac{1}{\pi} P_{Cauchy} \left[\int_{-\infty}^{\infty} \frac{1}{\omega' - \omega} d\omega' \right]$$

KRAMER-KRONIG

The Vector Fitting Web Site

ALTERNATIVE TO SIBC

SUBGRIDDING BOUNDARY CONDITIONS (SGBC)

Method	Error in RDC
Pure Maloney	$< 10^{-3}\%$
SGBC 2 layers	1.142%
SGBC 4 layers	1.141%
IBC 4th order	4.8%

Fig. 3: Shielding effectiveness for an aluminum planar slab with a conductivity $\sigma = 3.456 \cdot 10^7 S/m$ and a thickness h = 0.3mm. Space-step $\Delta = 2.5mm$.

TABLE I: Errors in DC prediction of a ($\sigma = 20S/m$), 216mm long x 120 mm width x 2 mm thick meshed with $\Delta = 6mm$.

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

A hybrid Crank-Nicolson FDTD subgridding boundary condition for lossy thin-layer modeling

Univ. of Nottingham, April

Miguel R. Cabello, Luis D. Angulo, Jesus Alvarez, Amelia R. Bretones, R. Gomez Martin, and Salvador G. Garcia, Senior Member, IEEE

sЕ

APPLICATIONS: INTA's SIVA

 FDM
 GDM
 Expert impression

 0.2038
 0.5315
 0.6243
 Excellent

 0.2659
 0.6137
 0.742
 Excellent

 0.2642
 0.5336
 0.6685
 Excellent

R. Jauregui, M. Pous and F. Silva, "Use of reference limits in the Feature Selective Validation (FSV) method," Electromagnetic Compatibility (EMC Europe), 2014 International Symposium on, Gothenburg, 2014, pp. 1031-1036.

IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY

UAVEMI PROJECT: NUMERICAL AND EXPERIMENTAL EM IMMUNITY ASSESSMENT OF UAV FOR HIRF AND LIGHTNING INDIRECT EFFECTS

Salvador G. Garcia⁽¹⁾, Ferran Silva⁽²⁾, David Escot⁽²⁾, Enrique Pascual⁽¹⁾, Mario F. Pantoja⁽¹⁾, Pere Riu⁽²⁾, Manuel <u>Anón⁽³⁾</u>, Jesús Álvarez⁽⁴⁾, M. Cabello⁽¹⁾, Marc <u>Pous⁽²⁾</u>, Sergio Fernandez⁽³⁾, Rafael <u>Trallero⁽³⁾</u>, Luís Nuno⁽³⁾

SIVA: A benchmark for numerical validation of composite UAV modeling in the UAVEMI project

Miguel R. Cabello¹, INTA1², UPC1⁶, AIRBUS1⁴, Luis D. Augulo¹, INTA2², UPC2⁶, AIRBUS2⁴, Daniel Mateon¹, INTA3², UPC3⁴, AIRBUS3⁴, Maria Fernandez⁶, INTA4⁷, UPC4⁶, AIRBUS4⁴, Amelia Ruhar¹, INTA5², Luis Nuño², AIRBUS5⁴

Univ. of Nottingham, April 2016

and S. G. Garcia!

Univ. of Nottingham, April 2016

semb

COSE

DISPERSIVE PERIODIC METASURFACES: LUNEBURG LENS

DB: Lune_Dielectrico_fdtd3_p22_ME_50_50_10__3150_1850_10.xdmf Cycle: 0 Time:1

anes.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 9, SEPTEMBER 2012.

user: salva Thu May 14 21:02:58 2015

Non-Uniform Metasurface Luneburg Lens Antenna Design

Marko Bosiljevac, Massimiliano Casaletti, Member, IEEE, Francesco Caminita, Zvonimir Sipus, Member, IEEE, and Stefano Maci, Fellow, IEEE

CABLE BUNDLE AND HARNESS SOLVING

Univ. of Nottingham, April 2016

- The return path is provided by the solution of Maxwell equations at the adjacent space, in terms of the displacement current flowing around a section transversal to the path
- The assumption of transmission line propagation is no longer restricted to common-mode TL solutions, and they obtain both antenna-mode differential (radiation), and common-mode TL solutions

Univ. of Nottingham, April 2016

CONFORMAL CABLE SOLVER

New Oblique Thin Wire Formalism in the FDTD Method With Multiwire Junctions

Christophe Guiffaut, Member, IEEE, Alain Reineix, Member, IEEE, and Bernard Pecqueux

FIELD-TO-TL CABLE SOLVER ONE-WAY FIELD-TO-TL: CO-SIMULATION (NO GEOMETRY)

State 1 : incident problem

- OK: Field-to-TL is especially suited for complex bundles
- KO: Disregards the re-radiation effects of cables flowing along cables. Depends on E/H coupling predominancy

F. Rachidi, "A Review of Field-to-Transmission Line Coupling Models With Special Emphasis to Lightning-Induced Voltages on Overhead Lines," in IEEE Transactions on Electromagnetic Compatibility, vol. 54, no. 4, pp. 898-911, Aug. 2012.

PARALLEL COMPUTER IMPLEMENTATIONS

SE E

FDTD Parallelization possibilities

Shared memory

- Several cores per CPU: Multithreading.
- Just needs compiler preprocessing directives to distribute loops
- Shared memory in single CPU.
- Performance scales linearly with number of threads.
- The standard is **OpenMP**. Included by default in c++.

Distributed memory

- Several CPUs.
- Needs specific code.
- Needs mesh partition to distribute the data among CPUs. Relatively simple partition in FDTD.
- Performance scales linearly with number of threads with special hardware.
- MPI is the standard. Several implementations available.

FDTD Parallelization possibilities

GPU, co-processors

- Code runs on special processing units such as the GPU, Intel's Phi co-processors.
- Usually hardware specific code.
- Performs a Single Instruction in Multiple Data threads (SIMD).
- Massive number of threads.
- Fast intra-GPU memory bandwidth. Slow GPU-Main memory bandwidth.
- Relatively new, there is no standard yet. Several implementations available: CUDA, OpenCL, OpenACC.

PRACTICAL APPROACH: SPLIT ALONG 1D DIRECTION TO MAINTAIN MEMORY LOCALITY

- OPEN-MP: Several cores intra-node. Directives to distribute DO-ENDDO loops
- MPI: Problem sliced among several nodes.
 Specific code to communicate data. Good scalability. > 20 Mcells/second/core

LARGE CPU:

AN OPEN ISSUE IN DETERMINISTIC EMC TD MODELING

HIGH-Q ENCLOSURES & LOW FREQUENCY PROBLEMS

Univ. of Nottingham, April 2016

SENSITIVITY

L (IN H UNITS) FOR THE OPTIMIZED CONFIGURATION AND PERCENTAGES OF DIFFERENCES WITH RESPECT TO PREVIOUS ONES

Equipment	O conf.	%(O-R)	%(O-S)	∫ % (O-E)
EFIS - ND	2.7687E-05	5	-18	1 4
EFIS - PFD	7.0352E-05	- 4	-36	-2
EFIS - ICP	4.2211E-05	7	-26	-7
ADU	1,6964E-04	5	-20	-2
IFC - IOP	2.1548E-05	1	-16	-2
IFF	2.1942E-04	1	-4	-14
MCDU	3.1985E-05	5	-23	
IEDS-1A-1.2	2.1285E-04	11	-251	-67
IEDS-IA-3.4	2.6177E-05	1	-17	-5
IEDS-1B-1.2	6.7040E-05	2	-33	-11
IEDS-1B-3.4	2.1098E-05	1	-17	-5
CEU	4.8688E-05	0	-8	-7
FECU	4.1339E-05	6	-64	-2

HER TRADUCTION OF FLUCTROBACOUTE FOMPATIBLITY

On the Design of Aircraft Electrical Structure Networks

Guadalupe G. Gunerrez, Damel Mateos Romero, Miguel Ruiz Cabello, Eurique Pascaal Gil. Member, IEEE, Lun Diaz Angulo, and Salvador Gonzalez Garcia. Senior Member, IEEE

NEXT STEP: STATISTICAL FDTD

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 7, JULY 2012

Stochastic FDTD for Analysis of Statistical Variation in Electromagnetic Fields

Steven M. Smith, Member; IEEE, and Cynthia Furse, Fellow, IEEE

FDTD CAN PROPAGATE EXPECTED VALUE & VARIANCE

 $E \left\{ B_{y}^{n+1/2} \left(k+1/2 \right) \right\} = E \left\{ B_{y}^{n-1/2} \left(k+1/2 \right) \right\} - \frac{\Delta t}{\Delta z} \left[E \left\{ E_{x}^{n} \left(k+1 \right) \right\} - E \left\{ E_{x}^{n} \left(k \right) \right\} \right]$

$$\sigma \left\{ H_{y}^{n+1/2} \left(k+1/2 \right) \right\} \approx \sigma \left\{ H_{y}^{n-1/2} \left(k+1/2 \right) \right\} + \frac{\Delta t}{\mu \Delta z} \left(\sigma \left\{ E_{x}^{n} \left(k+1 \right) \right\} - \sigma \left\{ E_{x}^{n} \left(k \right) \right\} \right)$$

Univ. of Nottingham, April 2016

3343

Introduction to the SEMBA Framework Time domain simulations and the FDTD method

PART II

Nottingham, United Kingdom April 4th-6th, 2016

OpenSEMBA Intr	0
----------------	---

Outline

- 2 Pre and post-processing
- 3 Meshers
 - ZMesher
 - Conformal Mesher
- 4 Solvers
 - UGRFDTD
 - CUDG3D

・ロト ・聞ト ・ヨト ・ヨト

SEMBA (Broadband Electromagnetic Simulator)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

SEMBA

SEMBA is a collection of integrated tools for TD CEM that can work coordinately.

- It includes DGTD and FDTD solvers.
- Uses common structures originally created for DGTD to store information that is used by the meshers and FDTD solvers. Now released as an OpenSource project (OpenSEMBA)

It has been developed essentially in the framework of these projects:

- High Intensity Radiated Field Synthetic Environment (European FP7, '08-'13, 44 partners: BAEs, ALA, ONERA, EADS, THALES, etc).
- A-UGRFDTD: Advanced UGRFDTD EM computer simulation tool (Airbus Mil., '12-'15).

(日) (同) (日) (日)

OpenSEMBA Intro			
└─SEMBA			
Overview			

Collection of integrated tools. Darker colors are developments carried on within the UGR.

(日)、

OpenSEMBA Intro

└_SEMBA

Overview

SEMBA and Cutoo

Pre and post-processing

・ロト ・聞ト ・ヨト ・ヨト

Pre-processing

The preprocessing is made with an **extension of GiD** having the following features:

- 1 Direct use of CAD data: import, repair, collapse,...
- 2 Geometric modeling facilities.
- 3 Allows to choose among several meshers and solvers.
- 4 Easy and user friendly interface.
- **5 Physical models**: materials, thin layers, wires.
- 6 Electromagnetic sources: plane-wave, dipoles, voltage generators.
- **Probes**: time/frequency domain, bulk currents, different geometries.

A D F A B F A B F A B F

Pre-processing

Pre-processing

CAD preprocessing with GiD-Semba

Material assignment with GiD-Semba

└─ Post-processing

Post-processing can be done with GiD and/or Paraview.

- Visualization of fields and currents at different time-steps.
- 2 Can generate time animations to show evolution of fields and currents.
- Results are also given in plain-text for additional preprocessing with custom programs.

Post-processing

Post-processing

GiD-Semba postprocessing view

Paraview post-processing view

OpenSEMBA Intro			
- Meshers			
Meshers			

Meshers

- Meshers

Meshers

Meshers are important

- Good meshers can dramatically reduce engineering time need for preprocessing.
- Simulation results will be as good as your mesh is.

Features of our solutions

- Mind the Physics of the problem: preserves ohmic connections, model sub-cell features, ...
- Mesh complex wirings, preserving connectivities.
- Can work with uncleaned CADs.
- Extremely large meshes, billions of cells with a PC.
- **Fastest**: Closest competitor is one order of magnitude slower.
- Minimal memory requirements, under 1 GB of RAM for typical meshes.

ZMesher

ZMesher

- Generates structured regular and Cartesian meshes.
- Mimics the geometry problem even for sub-cell features.
- Deeply tested in several architectures, operating systems and compilers.
- Licensed for distribution within GiD, to appear in next version.

Antenna geometry is preserved despite having a subcell geometry

OpenS	EMBA	Intro
-------	------	-------

- Meshers

ZMesher

UAV mesh with 14.5 MCells. Obtained with a desktop computer in less than 5 minutes.

▲□▶ ▲□▶ ▲目▶ ▲目▶

OpenSEMBA Intro

Meshers

ZMesher

Wire handling example. The connectivity among structures is preserved.

<ロト <回ト < 注ト < 注ト

- Meshers

Conformal Mesher

Conformal mesher

- Mesh adapts better to geometry, improved accuracy.
- Geometric adaptation can be graded to optimize the computational time-step by the solver.
- Captures geometrical sub-cell details.

UAV motor detail

- Meshers

Conformal Mesher

Isometric view of EV55 airplane. Conformal mesher offers better adaptation to curved objects. Morphed Evektor EV55 Used under the HIRF-SE EU FP7 project.

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Meshers

└─ Conformal Mesher

Rear view of EV55 airplane conformal mesh. Different layers highlighted with colors.

<ロト <回ト < 注ト < 注ト

Meshers

└─ Conformal Mesher

EV-55 meshed with ConformalMesher, internal view of the cockpit.

Meshers

Conformal Mesher

Example of the solution adopted by the Conformal Mesher to deal with sub-cell geometric details.

<ロト <回ト < 注ト < 注ト

OpenSEMBA	Intro
-----------	-------

- Solvers

SOLVERS

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

0		
	Denseiviba	Intro
	PCHOLIND	

Summary of solvers capabilities

	UGRFDTD	LFDG	CUDG3D
Space discretization			
Algorithm	Finite Differences	Discontinuous	Galerkin
Num. Fluxes		Centered, Upwin	d, Penalized
Element types	Rectilinear, conformal	Linear or quad	Iratic tet.
Type of basis		Vector	Nodal
p-adaptivity		Yes	No
Time integration			
Algorithm	LF2	LF2, LSERK4	LF2, LSERK4, Verlet
LTS		Dosopoulos, Optimized ass.	Montseny, CPLTS
Physical models			
EM Sources	Any	Any	Any
Anisotropic mat.	Yes	Yes	No
PMLs	Cartesian (CPML)	Conformal (ADE)	Cartesian (ADE)
Other absorbing BC.	Mur 1st and 2nd Order	Silver-Mueller ABC	
Dispersive mat.	Any (CCPR)	Simply conductive	Any (CCPR)
Thin layers	Yes	No	Yes
Thin wires	Yes	No	No
Thin slots	Yes	No	No
Other			
Language	Fortran (Intel)	Fortran (Intel)	C++ (gnu)
OS	Windows, Linux	Windows, Linux	Linux
Parallelization	MPI/OMP	MPI/OMP	MPI/OMP w. balance
Operator deduplication	Intrinsic	No	Yes
GUI	GiD-Semba, Cutoo	GiD	GiD-Semba

OpenSEMBA Intro			
Solvers			

UGRFDTD

・ロト ・聞ト ・ヨト ・ヨト

└─UGRFDTD

UGRFDTD features

UGRFDTD is a general-purpose time-domain simulator, specially suited to deal with HIRF, Lightning, NEMP... electrically-large EMC problems involving complex structures, complex materials and cables.

- **I** Multi-CPU (MPI) and multicore (OpenMP) capabilities.
- **2** Very large problems (billions of cells).
- 3 Improved accuracy with conformal meshing.
- Materials with frequency dependent permittivity and/or permeability, with an arbitrary number of complex-conjugate pole-residue pairs.
- 5 Bulk anisotropic materials, lossless and lossy dielectrics.
- 6 Cable bundles and harnesses.
- **7** Graphene, carbon nanotubes.
- **B** Multilayered composites, FSS, lossy surfaces, skin-depth,

UGRFDTD

Validations: HIRF on several aircrafts

Validated at aircraft level with experimental data under HIRF-SE by INTA, Airbus, Dassault.

OpenSEMBA Intro			
Solvers			
L CUDG3D			

CUDG3D

・ロト ・聞ト ・ヨト ・ヨト

Our DGTD solver, CUDG3D is now part of the OpenSEMBA project. OpenSEMBA is an opensource set of tools for electromagnetic simulations. It includes the following:

- CUDG3D: A full wave electromagnetic solver based on the Discontinuous Galerkin in Time Domain (DGTD) technique.
- SEMBA-GiD. A GiD based Graphical User Interface (GUI).
- libopensemba. A set of tools for storing, importing, exporting electromagnetic data. Including mesh manipulation capabilities.

This is all the minimum necessary to do simulations using a DGTD scheme.

Coding standard

OpenSEMBA is implemented in the C++ language using an OOP paradigm. Includes unit tests for many pieces of code.

æ

・ロット (雪) () () () ()

└- CUDG3D

Code repository is in GitHub:

https://github.com/OpenSEMBA/OpenSEMBA

() 992 commits	2 branches	anches 🛇 O réleases		🛱 5 contributors	
Branch master - New pull	request New file Find file	HTTPS - h	ttps://github.com/OpenSi	Download ZIP	
Indiazangulo Fixes bug in s	emba.unix.bat file avoiding the calculation of projects		Latest.com	nit #5879b2 10 days ago	
external	Fixes compilation. Removes cen messages for ERROR	ts in tayor of this	W	24 days ago	
gul/gid/semba.gid	Fixes bug in semba unix bat file avoiding the calculation		10 days ago		
src:	New version 0.10.1-DEMO			11 days ago	
testData/planewave.gid	Initializes and runs. Generates mesh. Ignores OutRg or	points.		a month ago	
gitignore	Removed googletest			a month ago	
gitmodules	Removed googletest			a month ago	
Maketite	New version 0.10.1-DEMO			11 days ago	

Screenshot of the project in GitHub, an opensource code repository that facilitates collaboration.

OpenSEMBA Intro			
Solvers			
∟cudg3d			

CUDG3D is an open-source Discontinuous Galerkin Time Domain Solver specifically developed to solve Maxwell curl equations.

- World unique DGTD Open-Source code for Maxwell's equations (to the best of our knowledge) with close to commercial features.
- The code is being re-factored and is currently not operational. We expect to have a renewed, fully operational, version by September 2016.
- This re-factorization aims to make contributions and code expansion more easy in the future.

A D F A B F A B F A B F

- Solvers

└─ CUDG3D

CUDG3D features

Spatial discretization

- Supports centered, upwind, and partially-penalized numerical fluxes.
- Linear or quadratic tetrahedrons.
- Scalar nodal basis, tested to work up to order 3.
- Does not support p-adaptivity.

Time Integration

- Supported time integrators: LF2, LSERK4, Verlet.
- Local Time Stepping: Montseny's and CPLTS.

э

・ロト ・ 雪 ト ・ ヨ ト

Physical models

- Electromagnetic sources: dipoles and planewaves.
- Cartesian non-homogeneous PMLs and SMA Boundary conditions.
- Dispersive materials (CCPR).
- Thin layers (SIBC, CCPR).

Implementation details

- MPI and OpenMP parallelization. Includes load balance for MPI.
- Includes operator de-duplication (extremely important for when using semi-structured meshes).

- Solvers

Conclusions

Conclusions

More information available in webpage:

```
www.sembahome.org
```

Video tutorials are available in the SEMBA channel in YouTube.

Thank you for your attention ! Questions?

WWW.SEMBAHOME.ORG

CCOSE

Univ. of Nottingham, April 2016

