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Problem Statement & Motivation
Security & ID

Automotive & IoT

NAV & Moving Objects

Emergence of connected smart objects puts new requirements on RFIC

design, modeling and experimental verification.

Near-Field measurement appears as a bridging gap between circuit

design (RFIC-Chip-Package-PCB) and field radiation (Antennas) with the

following driving motivations:

• Verification of EMC/EMI compliance for product evaluation and

qualification (certification-oriented).

• Diagnosis of Power Integrity (PI), Signal Integrity (SI) and EMC/EMI

problems for design improvement (Debug-oriented).

• Coupled analysis of spatial radiated field distributions and Spectral-

domain/Time-domain responses for optimization of dynamic power

management (Awareness).

• Monitoring of performances as function of environmental uncertainties

(Power Spectrum management).

Stochastic approaches are not only necessary because of our partial

or insufficient knowledge of the mechanisms underlying the true

physics, they also reflect various uncertainties.

Challenges of proper System-Level Modeling & Predictive Analysis



Motivation for Near-Field Measurement & Analysis

Near-Field Probing

System-Verification

Near-Field Measurement as enabler for contact-less Verification & Qualification

15% to 25% of total product development cost is Test/Debug.

Main factors are:

• Test time: long test list, long test time

• Equipments cost: RF tester > 1 M$

• Operator and maintenance:  qualification

Tester Capital

Handler Capital

Test House, Maintenance,Operator

Test Development NRE
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System-Level Test & Verification Coverage
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Test coverage: 

•Noise floor measurement (with signal)

•Phase Noise & spurii measurement

•Dynamic range measurement in conjunction

•I,Q baseband signal genarator (AFQ100) noise

performance is not sufficient

•So a dc offset is applied to provoke LO leakage

artficially to simulate the RF signal

•DC offset is increased up to the level which

generate the required output power

SSA:E5052A

P
h

a
s
e

 n
o

is
e

Noise correction to be applied:

Near-Field Probing



RF Chip-Package-PCB Verification
System-Level-Test-bench 

MCM

MCM SMDs

MCM

PCB

Signals which are in general Multi-scale, Multi-harmonic, a-periodic can be continuous 

or transient and impulsive. Necessity of Time domains analysis.
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Objectives & Workplan

The workplan of the STSM is  the following:

• Time-Domain Near-Field measurement of stochastic emissions radiated from wireless

link demonstrator board [Chip-to-Chip Communication].

• Assessing effects of identified noise sources (e.g., Crystal Oscillators) on induced

Near-Field levels.

• Evaluating impact of Pre-Amplifiers and feeding cables on the sensitivity of Near-Field

measurements including influence of calibration: [including assessment of sensitivity

and dynamic range of used Near-Field probes].

• Measuring couplings (to be completed with radiation patterns) between antennas with

various separation distances using anechoic chamber facilities in the perspective of

MIMO systems for 5G applications and beyond.

• Studying possibilities to further reduce measurement time and data processing steps

in the perspective of industrial test and qualification of assembled circuits and

systems.
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Near-Field Measurement in Time-Domain

• Two-probe time-domain scanner with multi-channel digital oscilloscope (4 Gsa/s). 

• One million sample points are captured per channel and used to extract field-field 

auto-correlation and cross-correlation functions.

• The probes can be moved in the XY plane by monitoring step motors. 

Time-Domain Scanner

Moving probes
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Langer Near Field Probes

12

XF Near Field Probes to 6 GHz

Langer Near Field Probes

XF Near Field Probes to 10 GHz

Evaluation of Measured Stochastic Field as function of RF Probes size

[planned]



Langer Near Field Probes
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XF R 400-1 (6 GHz)



Langer Near Field Probes
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XF Near Field Probes to 6 GHz



Langer Near Field Probes
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SX Near Field Probes to 10 GHz



S Parameters on Langer Near Field Probes (6 GHz)

16



S Parameters on Langer Near Field Probes (10 GHz)
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Near-Field Measurement in Time-Domain
[Sensitivity Analysis]

• Variation of the detected Near-Field emission @1GHz (Dipole antenna as DUT).

• Near-Field scanner sensitivity detected around -135dBm (Pre-amplified).
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Measurement of Near-Field Radiated Emissions 

from Chip-to-Chip Communication Link

• The Quadrature Channel (QUAD) Low-Noise Block (LNB) combined in one device.

• The Quad RF downconverter has 2 RF inputs, 4 IF outputs in the frequency bands from 950MHz

to 1.10 GHz for the Low-Band and from 1.95GHz to 2.15GHz for the High-Band.

• Dual LO PLL frequency synthesizer: 9.75 & 10.6 GHz. The PLL circuits use an integrated 25MHz

crystal oscillator (with off chip crystal resonator).

S.Wane , G. French ,A. Erdem, E. Capelleveen, P. Philippe, S. Bardy, O. Tesson, E. Thomas, P. Brousse, D. Leenaerts,

J. Lucek, "Ku Band Down-Converter for QUAD LNB Satellite Applications", IEEE RFIC Show-Case, Phoenix, 2015.



Measured Spectral Energy Density
Sacnning start

Sacnning 

Line

Crystal  Oscillator

[oscillation @ 25MHz]



Correlation Matrix Visualization @24.9853MHz

Sacnning start

Sacnning 

Line

Crystal  Oscillator

[oscillation @ 25MHz]

Maximum correlation observed around Crystal Oscillator resonant frequency



Measured Spectral Energy Density 

as function of Cumulative Principal Components
Sacnning start

Sacnning 

Line

Crystal  Oscillator

[oscillation @ 25MHz]• More than 90% of Spectral Energy Density carried by the first 10

principal components [directions for complexity reduction by filtering].

• Effects of Broadband Probe-Preamplifier matching ?



23.

Frequency-domain and time-domain Near-Field scanning solutions are evaluated

for the measurement of radiated emissions from wireless chip-to-chip

communication links. Both scanning systems reveal importance of proper Probe-

Pre-amplifier co-design. Perspectives for distributed Chip-Package LNA-Probe

array co-design are proposed for Multi-probe Near-Field sensing.

Preliminary prototyping shows promising performances

(noise figure uncertainty including Monte-Carlo Standard

Deviation: SD) when On-Chip LNA pre-amplifiers are co-

designed with Bond-Wire loop sensors implemented at

package level. Prototype circuits tested using On-Chip

LNA modules co-designed with Bond-Wire loop arrays.

The Bond-Wire loops in the order of 100µm equi-spaced

by a separation distance less than 40µm lead to very

high spatial resolution suitable for Near-Field scanners.

LNA-Probe Co-Design
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Concluding Remarks

• Move from Qualitative to Quantitative evaluation of Stochastic Near-Field

Emissions:

─ Need for proper calibration of Near-Field Probes in Time-Domain

─ Need for bi-univocal transformation of Voltages/Currents into Fields [SED]

─ Sensitivity/Resolution of Near-Field Probes [Min/Max Power]

• Challenges for industrialization:

─ Test time [maybe parallel processing could be used]

─ Use in production design & verification flow

─ Repeatability

• Benchmarking & Directions for Improvement:

─ Benchmarking Frequency and Time-Domain Near-Field solutions

─ Evaluation of Optical probing [reduced couplings, less invasive probes]

─ Co-Design of LNA-Probe arrays using distributed Chip-Package solutions

[improved resolution] 25
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Ongoing Actions & Suggestions

27

• X-rays analysis of Near-Field probes for properly mapping

measured Voltages/currents into EM Field values

• Evaluation of Broadband Noise/Sensitivity performances of used

LNA+Probes system [variation as function of probes size) as

function of software statistical activity

• Broadband Network modeling of coupled probes

• Multi-path Near-Field to Far-Field interactions [e.g., MIMO]

• Evaluation of Optical Near-Field Probing (Kapteos solutions):

[seems suited only for high power applications: e.g., >30dBm]



• Problem Statement & Motivation

• Objectives & Workplan

• Main results & Discussions

• Concluding Remarks & Observations

• Ongoing Actions & Suggestions

• Dissemination [accepted publications]

OUTLINE



Dissemination [Accepted Publications]
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