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Introduction

= In the context of modern computer-aided manufacturing accurate EMI
modeling is required to design systems in a way that they comply with
EMC standards.

= The modeling of stochastic fields differs from the modeling of
deterministic fields since we have to consider the correlation between any
pair of field samples.

= We present a methodology for the numerical computation of noisy
electromagnetic fields excited by spatially distributed noise sources with
arbitrary spatial correlation.
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Introduction

= Near field characterization of the EMI radiated by a component is aimed
to provide the information for modeling of EMI field distribution produced
by this component when embedded into some system unit.

= Due to the equivalence principle an equivalent source distribution
determined by amplitude and phase scanning of the tangential electric or
magnetic field on a surface enclosing the radiating structure is equivalent
to the internal sources and allows to model the environmental field.

= State of the art comprises electromagnetic interference (EMI) near-field
scanners, scanning the electric or magnetic near-field amplitude
distribution.

= Literature:
e J. A. Russer and P. Russer, “Network methods applied to the computation of stochastic
electromagnetic fields,” in 2011 Int. Conf. on Electromagnetics in Advanced Applications
(ICEAA), Sep. 2011, pp. 1152—1155
e J. A. Russer and P. Russer, “Modeling of noisy EM field propagation using correlation
information,” /IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 1,
pp. 76-89, Jan. 2015
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Network Oriented Noise Modeling

= Numerical values of noise amplitudes cannot be specified for stochastic
signals.

= For numerical modeling of noisy circuits one has to deal with energy and
power spectra.

= Stationary stochastic signals with Gaussian amplitude probability
distribution can be completely described by their auto- and cross
correlation spectra.

m |iterature:
o W. B. Davenport and W. L. Root, An Introduction to the Theory of Random Signals and
Noise. New York: McGraw-Hill, 1958
e H. A. Haus and R. W. Adler, Circuit Theory of Linear Noisy Networks, New York. John
Wiley, 1959
o H. Hillborand and P. Russer, “An efficient method for computer aided noise analysis of
linear amplifier networks,” , vol. 23, no. 4, pp. 235-238, Apr. 1976
o P. Russer and S. Muller, “Noise analysis of linear microwave circuits,” /nternational
Journal of Numerical Modelling, Electronic Networks, Devices and Fields (IJNM), vol. 3,
pp. 287-316, 1990
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Network Oriented Noise Modeling

= The spectrum of a stochastic signal does not exist.

= We can, however take a time-windowed sample sp(t) of a signal s(t)
defined by

s(t) for |¢|<T
sT(t)_{ 0 for |f|>T ° M

= From this time-windowed signal we can compute the spectrum St (w)

Sr(w) = foc sp(t)e =1t dt | (2a)
sp(t) = % JOO St (w)e?™t dw . (2b)
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Correlation Functions and Correlation Spectra

= For a stationary stochastic signal we define the correlation function

T i

ci; (1) = Th_r)réo B f_oo sir(t)s;r(t—7) dt. (3)

= For ¢ = j, the function ¢;;(7) is called the autocorrelation function; c;;(T)
with i # j is called the cross correlation function.

= The Fourier transform C;;(w) of ¢;;(r) is the correlation spectrum:

+0
Cij(w) = f e (T)e T dr | (42)
[l
cij () = f Cij(w)e’™T duw , (4b)

where Cj;(w) is an autocorrelation spectrum and C;;(w) with i # j is a
cross correlation spectrum.

jrusser@tum.de Experimental and Theoretical Investigation of Stationary Stochastic EM Fields 6 Apr 2016, Page 7/52



I Institute for Nanoelectronics Technische Universitat Miinchen HH H

Network Oriented Noise Modeling

= We can also write the correlation spectra as

Ciyw) = Jim = (Sir(@)STr (), ®)

where the brackets <...) denote the forming of the ensemble average.
The ensemble average has to be formed before the limiting process
T — oo since the amplitude spectrum does not exist for 7" — oo.

= The autocorrelation spectrum C;;(w) describes the spectral energy
density of the signal s, (t).

= To compute the spectral energy densities of linear superpositions of
signals we need also their cross correlation spectra.
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Correlation Matrices

= We can summarize the correlation spectra of a number of n signals in the
correlation matrix

gnEw% gmgw; e glngw;
Clw) = 21: 22: 2n 6)
Cnl (OJ) On2 (UJ) o Cnn (LU)

= The correlation matrix is Hermitian.

= Summarizing the spectra of the time windowed signals Si7(w) ... Spr(w)
in the vector St(w) we can represent the correlation matrix in the
compact form

C(w) = Jim (Sr(w) Shw)). 7)
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A General Rule for the Derivation of Network
Equations for Correlation Matrices

= The equations describing linear networks have the form
Sr(w) = M(w) St(w). (8)
= This yields to the relation between the correlation matrices
C'(w) = M(w) C(w) M'(w). (9)
= o H. Hillbrand and P. Russer, “An efficient method for computer aided noise analysis of
linear amplifier networks,” , vol. 23, no. 4, pp. 235-238, Apr. 1976
o P. Russer and S. Muller, “Noise analysis of linear microwave circuits,” International

Journal of Numerical Modelling, Electronic Networks, Devices and Fields (IJNM), vol. 3,
pp. 287-316, 1990
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Scalar Stochastic Fields

NEAR-FIELD il
SCAN{_ANE el
TP D(x)
e m
/’/MP:‘ J'; v TTTTT = X2
X %

Figure: Near and far field.

The aperture field ¥(z’) is the source of a far-field ().
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Near and Far Field
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The far-field ®(x, w) is related to the near-field ¥ (z’,w) via
O(x,w) = f Golz,x',w)¥(x'w)d3x’
A

where the scalar Green’s function Go(x, ') is given by

exp[—gk(x — o))
EErI

Go(z,x',w) =

(11)
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Stochastic Scalar Fields

co(T1, T2, T) = hilgoff or(xy,t)dr(Te,t — 7)dt . (12)

= s7 denotes the time-windowed field, defined by

,t) for —T<t<T
¢T(«’B17t>={ d)(mo1 ) for [t| =T i (13)

= The Fourier transform of cy(x1, x2, 7) is the correlation spectrum
o0

Ly(x1, 22, w) = J co(1, T2, T) exp(—jwr)dT . (14)

—00
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Stochastic Scalar Fields

= We can also obtain the correlation spectra directly from the spectra
Or(x,w) of the time-windowed fields by

F¢(m17$27w) = l}_rgo _T"<(PT(:U1’ )(I):lk“(x27w)>5 (15)

where the brackets denote the forming of the ensemble average.
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Stochastic Scalar Fields

= To express the correlation spectrum of the far-field I'y (x4, 2, w) as a
function of the correlation spectrum of the near-field, given by

F¢(m1,x2,w) = hm L<¢’T(1131, )W;(mg,w», (16)

T—

we insert (10) into (15) and obtain

F¢($1,£I)2 = lfcl)oﬁﬂ‘ GO 1:1,171

< (Up(2)) Vi (xh) ) G§ (w2, h)d* ) dPa)y

I ﬂ Goly, @,)T (), 23)GE (w2, 2l Bl dzy . (17)
A
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Stochastic Scalar Felds

= This allows to compute the field correlation spectrum T s(x1, x2) for the
field amplitudes at the points of observation ; and x, from the
correlation spectrum of the source field T'y, (2, z5).

= To compute the field excited by a distribution of stochastic sources
requires not only the knowledge of the spatial distribution of the spectral
energy density of the source but also the full information about the cross
correlation of the source field amplitudes at any pair of points x!, and x},.
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Outline

Vectorial Stochastic Fields
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Vectorial Stochastic Fields

= Consider a current density vector J(x,w) describing the source of the
electromagnetic field. The electric field excited from J(x,w) is given by

E(z,w) = JV G(z,x',w)J(z',w)d®z (18)

where G(z, ', w) is the total Green’s dyadic .

= The integration is extended over the whole volume V where J(x,w) is
nonvanishing.

o J. V. Bladel, Electromagnetic Fields, 2nd. New York: J. Wiley, 2007
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Vectorial Stochastic Fields

= Stochastic source currents can be described by the dyadic

. 1
Ly(@y,@2,w) = lim (T (@, 0) T p(x2,0), (19)

where Jr(z,w) is the time-windowed current density, and J1.(z,w) is its
Hermitian conjugate.

= The stochastic electric field can be described by the dyadic
. 1
L@, @2,w) = lim o (Br(@y,w) Bl (22,), (20)

where Er(x,w) is the spectrum of the time-windowed electric field.
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Vectorial Stochastic Fields

= We obtain
F mlan; ﬂ G w17w1
xT y(x), by, )G (xs, 2h)d® 2 d>x)y . (1)

= With this we obtain from the correlation dyadic T j(x1, x2,w) of the source
currents the correlation dyadic of the electric field T g(x1, 2, w).

= The spectral electric energy density Wg(x,w) is given by
Wg(x,w) = %|FE(as,w7w)|, (22)

where ¢ is the permittivity of the medium.
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Environmental Field Computation

. 1
L y(@a, @, w) = Jim (I (@a, )T} (26, 0))

E(m,w) — fv G-, w)J(x',w)d%"j‘/

. 1
Fp(Ta,xp,w) = Ylgnoo ﬁ<ET($a»w)E;~(wbyw)>

I'g(xq,xp,w) = jf G(xq — ) Ty, x), w) Gl (x, — x})d3z!, d>z) .
1%

With this we obtain from the correlation dyadic I ; (x4, =, w) of the source currents the correlation
dyadic of the electric field I'g (x4, Tp, w).
The spectral electric energy density Wg(x,w) is given by

We(,w) = - |Up(@ )| (23)
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Numerical Computation of Stochastic Fields
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Numerical Computation of Stochastic Fields

= The numerical computation of stochastic electromagnetic fields can be
performed in an efficient way by transforming the field problem to a
network problem.

= Like in the case of deterministic electromagnetic fields also in the case of
stochastic electromagnetic fields network methods can reduce the
computational effort considerably and beyond this can contribute to
compact model generation.

= Network methods for deterministic fields already have been described in

o P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications
Engineering, Second. Boston: Artech House, 2006

e L. B. Felsen, M. Mongiardo, and P. Russer, Electromagnetic Field Computation by
Network Methods. Springer-Verlag, Mar. 2009
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Numerical Computation of Stochastic Fields

= In the following we describe the computation of stochastic
electromagnetic fields by the Method of Moments (MoM).

= The MoM allows to transform a field problem into a network-like problem
described by algebraic equations.
e R. F. Harrington, Time Harmonic Electromagnetic Fields. New York: McGraw-Hill, 1961

jrusser@tum.de Experimental and Theoretical Investigation of Stationary Stochastic EM Fields 6 Apr 2016, Page 22/52



I Institute for Nanoelectronics Technische Universitat Miinchen TH—’ H

Numerical Computation of Stochastic Fields

= Let us first apply the MoM to compute the integral expression for
deterministic fields. We expand the field functions J(x,w) and E(x,w)
into basis functions

J(@,w) = In(w)un(z), (24a)

E(z,w) = ) Va(w)un(z), (24b)

where the u,,(x) are vectorial basis functions and I,,(w) and V,,(w) are
the expansion coefficients.

= We can consider I,,(w) and V,,(w) as generalized voltages and currents,
respectively. If use a complete set of basis functions, the series
expansions will converge to the exact value.

= However, to facilitate a numerical treatment of the problem we have to
truncate the series expansion after a finite number of elements.
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Numerical Computation of Stochastic Fields

= With these series expansions we obtain
DVaun(@) = N1uw) | Gl o wpun@)ds’. (25)
= Using expansion functions ., (x) with the property
| wh@ru (@t = b, (26)

where §,,,, is the Kronecker delta, and multiplying (25) from the left with
u (x) and integrating over V yields

Vin (@) = Y Zinn (@) In () - (27)
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Numerical Computation of Stochastic Fields

We expand the correlation dyadics I' j (., xp,w) and ' g(x,, €y, w) into basis
functions

Crmn(w Jf )Tz, ', w)u, () d>z d*z’ (28a)

Cv.mn(w Jf z)p(x, x', w)u, () d>x d2’ . (28b)

These matrix elements can be summarized in the matrices

[ Crii(w) ... Crain(w)

Cr(w) = : : ; (29a)
| Crnvi(w) ... Crnn(w)
[ Cvii(w) ... Cyvan(w)

Cyw) = z : : (29b)
| Cynvi(w) ... Cynn(w)
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Numerical Computation of Stochastic Fields

The matrix elements Z,,,,,(w) are given by

Zmn(w) = Jf ul ()G (x, @, w)u, (x') d®z d>z’ . (30)
1%

For a chosen dimension N of the series expansions (24a) and (24b) we
introduce the generalized current and voltage vectors

I(w) = [L(w) ... Inw)]", (31)
Vw) = [Viw)...Va)]" , (32)
and the impedance matrix

le(w) e ZlN(W)
Z(w) = : : . (33)
ZNl(w) ZNN(OJ)
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Numerical Computation of Stochastic Fields

We can write

in matrix form as

V(w) = Z(w)I(w) (34)
as
Cv(w) = Z(w) Cr(w) ZT(w) (35)
with
C1() = Jim (T (@)Ir@)h, (36)
Cv(w) = Jim o (Vr(@)Vr)h. @37)

Using the MoM we have reduced the field problem to a network problem.
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Outline

B Near-Field Scanning
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Near-Field Distribution of Sources in a Plane

PEC
Source Plane - Scan Plane

Planar array of 5 sources sampled at a plane parallel to the source plane.

e J. A. Russer and P. Russer, “Modeling of noisy EM field propagation using correlation
information,” /IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 1, pp. 76-89,
Jan. 2015

e J. A. Russer, F. Mukhtar, O. Filonik, G. Scarpa, and P. Russer, “Modelling of noisy EM field
propagation using correlation information of sampled data,” in /EEE Int. Conf. on Numerical
Electromagnetical Modeling and Optimization NEMOZ2014, Pavia, ltalia, May 2014
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Schematic drawing of the near-field scanning system.
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Computation of the Near-Field

Accounting also for the near-field contributions the Green’s dyadic is given by

G(z,w) = [g1(z,w)1 + go(x,w)za" | e BTl (38)

o 1:identity matrix e |x|=+/22 +y2 + 22

e 3 =w/cy: phase coefficient e ¢,: free-space light velocity

_ 3ZroBP | 1 J 1

gl(w7ﬁ) 2] 471_ |:5|$| + 62|m|2 o7 63|m|3:| b (393)
_JZreB [ 1 39 3

9 8) = T [ﬁwl3 ¥ Bt~ 53wl5] | ki

Zro = /€0/ 10 I8 the free space wave impedance, and the 7 denotes the
transpose of the vector.
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Frequency Dependence of the Correlation Matrix
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e J. A. Russer, M. Haider, M. H. Baharuddin, C. Smartt, A. Baev, S. Wane, D. Bajon,
Y. Kuznetsov, D. Thomas, and P. Russer, “Correlation measurement and evaluation of stochastic
electromagnetic fields,” in To be published at the EMC Europe 2016, Wroclaw, 2016
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Figure: Cumulative explained variance of the principal component vs. frequency and
spectral energy density.

e J. A. Russer, M. Haider, M. H. Baharuddin, C. Smartt, A. Baev, S. Wane, D. Bajon,
Y. Kuznetsov, D. Thomas, and P. Russer, “Correlation measurement and evaluation of stochastic
electromagnetic fields,” in To be published at the EMC Europe 2016, Wroclaw, 2016
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Outline

Far-Field for Partially Coherent Excitation
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Far-Field for Partially Coherent Excitation

= In spherical coordinates the far-field exhibits only a ¢¥-component of the
electrical field and a p-component of the magnetic field, given by
N-1
By = ZpoHy = jZroF(9,0) D) 1,
v=0

efjk/”u

40
orr, (40)
where I, is the excitation current of the v-th dipole, Z; is the wave
impedance of the free space, F (v, ) is the single dipole characteristics.
e J. A. Russer and P. Russer, “An efficient method for computer aided analysis of noisy

electromagnetic fields,” in Microwave Symposium Digest (MTT), 2011 IEEE MTT-S International,
IEEE, Jun. 2011, pp. 1-4
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Far-Field for Partially Coherent Excitation

= The distances between the far-field point of observation and the center of
the vth dipole is given by

Ty, =T — Xy sind cos — y, sin¥sinp — z, cos . (41)
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Far-Field for Partially Coherent Excitation

On the right-hand side of (40) we can approximate in the far field the r, in
the denominators by rg.

= We summarize the antenna element feed currents in the vector

I=1[L...Ix]". (42)

= Furthermore, we introduce the vector

F(v,
M(9,) = jZro 2(7”«;0) [e=sbr . emohrha] | (43)

= With (40) this yields
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Far-Field for Partially Coherent Excitation

= To describe a stochastic excitation of these near-field cells we introduce
the correlation matrix of the antenna feed currents

WM ENLUA t
Ci(w) = Th_fgo ﬁ<IT(w) I, (w)). (45)
= We obtain
Tro (91, 91302, p2) = M (91,01)CrM' (92, 02) . (46)

= This yields the spectral electric energy density of the far-field

We(d,¢) = 5 M(2,0)CrM' (9, ¢). (47)
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Far-Field for Partially Coherent Excitation

Figure: Linear array of N = 9 near-field cells.

Let us make the following assumptions:
= All currents in I; are mutually correlated and in phase.

= The currents in I, are assumed to be mutually correlated and to exhibit a
phase delay of n7/6 with respect to I»;.

= The currents of I3 all may have equal amplitude but are mutually
uncorrelated.

= The currents I; and I, are mutually uncorrelated for ¢ # j.
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Far-Field for Partially Coherent Excitation

= The correlation matrices of I, I, and I5 are given by
Ci; = ;). (48)
= The mutually uncorrelated currents I, and I yield
Cl,=0 for i+j. (49)

= The mutually correlated in-phase currents I, of equal amplitude I; are
described by

1 1 1

I 11 ... 1
LS HVEHHIICHITINL 1) (50)

1 1 1
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Far-Field for Partially Coherent Excitation

= Excitation with C1,

= The currents are correlated and all in
phase.

= Angular far-field spectral energy
density distribution for 9 = /2.

gl mmAanahmnan
111111111
gL gl Uy g Ug Uy Ul
20U ] (0 Ll ) ] (] L

o =m0 U g gl (51)
B (AR R &G A
111111111
10 UYial al ) U] ) U
DU a0 AL anmn A
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Far-Field for Partially Coherent Excitation
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= Excitation with C1,

= The currents are correlated and
mutually delayed by 7/6.

= Angular far-field spectral energy
density distribution for ¢ = /2.
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Far-Field for Partially Coherent Excitation

i = Excitation with C,
4 = All currents are mutually uncorrelated.
) = Angular far-field spectral energy
: : density distribution for 9 = /2.
[ 1.0 00000 0 0]
01 000O0O0OTO0OO
001 0 000 0O
o0 01 000 0O
Cl,=1L2* 000010000 (53)
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| 0000 0O0O0O0 1|
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Far-Field for Partially Coherent Excitation
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= Excitation with superposition of
correlated currents C, and

uncorrelated currents C?,

= Angular far-field spectral energy
density distribution for ¢ = /2.
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Far-Field for Partially Coherent Excitation

Ufro ity

2. 4.0C%,

3. Ci, +02C1,

4. 0.7C1; + 0.7CL, +1.4C%,

~60 —40 —20 20
Electric far-field distribution over ¢ for ¥ = 7 /2.

CLw) = lmrooo Fp([T1r (@) + Loz (@) [T (@) Tp@)]) -
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Far-Field for Partially Coherent Excitation

Non-uniform linear
array of Hertzian
dipoles.

ox

Polar plot of (| E.()|?) in the far-field.
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Far-Field for Partially Coherent Excitation

Non-uniform linear
array of Hertzian
dipoles.
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Polar plot of (| E.()|?) in the far-field.
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Far-Field for Partially Coherent Excitation

Excitation Dependence of Far-Field Correlation

Uncorrelated Partially Correlated
Excitation Currents

The magnitude [L (41, ¢2)| of the correlation spectrum of the electric field
amplitudes in the %r-field at angular positions 1 and - for uncorrelated and
partially correlated excitation currents.
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Bl A Scheme for Discrete-Time Correlations
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TLM - A Discrete Scheme of Electromagnetism
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Figure: Schematic of the TLM cell: a) Space cell with samples of the tangential electric
and magnetic field values and wave pulse amplitudes, b) TLM node.

In the TLM—method, the electromagnetic field is modeled by wave pulses
propagating on a Cartesian mesh of transmission lines.

o W. Hoefer, “The transmission line matrix (TLM) method,” in Numerical Techniques for
Microwave and Millimeter Wave Passive Structures, T. Itoh, Ed., New York: J. Wiley, 1989,
pp. 496-591
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TLM - A Discrete Scheme of Electromagnetism

= In a compact formulation of the TLM scheme we summarize all 12N
incident wave pulses in the vector a[k] and all 12N scattered wave pulses
in the vector b[k].

= The argument k£ enumerates the discrete time step. We can formulate the
TLM scheme in the compact Hilbert space notation where the scattering
matrix S describes the instantaneous scattering of the wave pulses in the
TLM node and I" describes the connection of the TLM nodes with the
adjacent TLM nodes.
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Correlation Green’s Function

We introduce the Correlation Green’s Function (CGF) K;j.pe[k] for the TLM
wave amplitude correlation functions

Kijipal Z Gipll]Gjqll + K] (55)
l=—0
We obtain
chilml= > > Kinslllch[m 1], (56)

n,.,ns€Bl=—00

relating the auto- and cross correlation functions cﬁ’j[m] of the wave
amplitudes scattered from the boundary to the auto- and cross correlation
functions ¢ [m] incident to the boundary.

o J. A. Russer, A. Cangellaris, and P. Russer, “Correlation transmission line matrix (CTLM)
modeling of stochastic electromagnetic fields,” in Microwave Symposium (IMS), 2015 IEEE
MTT-S International, May 2016, to be published
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Figure: Arrangement of source and observation points.
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Numerical Example

—correlated (in—phase)
---correlated (antiphase)
uncorrelated

t/ns

Figure: Time domain autocorrelations of the observation points for a two-source

excitation with correlated in-phase, correlated antiphase, and uncorrelated
sources.
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Conclusion

= For computation of the response to stochastic field excitation the
response functions computed for deterministic fields can be used.

= For the correct modeling of stochastic electromagnetic fields the spatial
correlations of the source distributions have to be considered.

= The measurement effort is feasible if modern time-domain EMI
measurement systems are applied. The intensity and mutual correlation
of noise sources can be analyzed.

THANK YOU FOR YOUR KIND ATTENTION!
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